共查询到20条相似文献,搜索用时 0 毫秒
1.
Carson E. Agnew 《Journal of forecasting》1985,4(4):363-376
Economists, like other forecasters, share knowledge, data and theories in common. Consequently, their forecast errors are likely to be highly dependent. This paper reports on an empirical study of 16 macroeconomic forecasters. Composite forecasts are computed using a sequential weighting scheme that takes dependence into account; these are compared to a simple average and median forecasts. A within-sample composite is also calculated. Both these methods perform significantly better than the average or median of the forecasts. This improvement in accuracy is apparently because the dependence between the forecasters' errors is so high that the optimal composite forecasts sometimes lie outside the range of the individual forecasts. 相似文献
2.
This paper addresses issues such as: Does it always pay to combine individual forecasts of a variable? Should one combine an unbiased forecast with one that is heavily biased? Should one use optimal weights as suggested by Bates and Granger over twenty years ago? A simple model which accounts for the main features of individual forecasts is put forward. Bayesian analysis of the model using noninformative and informative prior probability densities is provided which extends and generalizes results obtained by Winkler (1981) and compared with non-Bayesian methods of combining forecasts relying explicitly on a statistical model for the individual forecasts. It is shown that in some instances it is sensible to use a simple average of individual forecasts instead of using Bates and Granger type weights. Finally, model uncertainty is considered and the issue of combining different models for individual forecasts is addressed. 相似文献
3.
Robert F. Bordley 《Journal of forecasting》1986,5(4):243-249
The standard approach to combining n expert forecasts involves taking a weighted average. Granger and Ramanathan proposed introducing an intercept term and unnormalized weights. This paper deduces their proposal from Bayesian principles. We find that their formula is equivalent to taking a weighted average of the n expert forecasts plus the decision-maker's prior forecast. 相似文献
4.
This paper considers the problem of determining whether forecasts are unbiased and examines the implications this has for combining different forecasts. The practical issues of how economic forecasts might be combined are discussed. There is an empirical illustration of the procedures in which the properties of UK forecasts from the London Business School, the National Institute, the Henley Centre for Forecasting, Phillips and Drew and the OECD are examined. 相似文献
5.
6.
Luisa Tibiletti 《Journal of forecasting》1994,13(1):21-27
A general Bayesian approach to combining n expert forecasts is developed. Under some moderate assumptions on the distributions of the expert errors, it leads to a consistent, monotonic, quasi-linear average formula. This generalizes Bordley's results. 相似文献
7.
We provide a general Bayesian model for combining forecasts from experts (or forecasting models) who might be biased and correlated with each other. The combination procedure involves debiasing and then combining unbiased forecasts. We also provide a sequential method for learning about the forecasters' biases in the process of combining information from them. 相似文献
8.
John B. Guerard 《Journal of forecasting》1989,8(3):315-329
It has been shown in recent economic and statistical studies that composite forecasts may produce more accurate forecasts than individual ones. The purpose of this study is to develop composite forecasting models that may produce forecasts superior to the individual forecast implicit in forward exchange rates. In an efficient market one would expect to find little improvement with the composite models relative to the forward exchange rate. 相似文献
9.
This paper evaluates six optimal and four ad hoc recursive combination methods on five actual data sets. The performance of all methods is compared to the mean and recursive least squares. A modification to one method is proposed and evaluated. The recursive methods were found to be very effective from start-up on two of the data sets. Where the optimal methods worked well so did the ad hoc ones, suggesting that often combination methods allowing ‘local bias’ adjustment may be preferable to the mean forecast and comparable to the optimal methods. 相似文献
10.
We develop a novel quantile double autoregressive model for modelling financial time series. This is done by specifying a generalized lambda distribution to the quantile function of the location‐scale double autoregressive model developed by Ling (2004, 2007). Parameter estimation uses Markov chain Monte Carlo Bayesian methods. A simulation technique is introduced for forecasting the conditional distribution of financial returns m periods ahead, and hence any for predictive quantities of interest. The application to forecasting value‐at‐risk at different time horizons and coverage probabilities for Dow Jones Industrial Average shows that our method works very well in practice. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
11.
Lee Roy Beach Valerie E. Barnes Jay J. J. Christensen-Szalanski 《Journal of forecasting》1986,5(3):143-157
The conflicting viewpoints about the quality of judgemental forecasts are examined and a model is proposed that attempts to resolve the conflict. The model sees forecasts as contingent upon the repertory of forecasting strategies that the forecaster brings to the forecasting task, the strategy that he or she selects as a function of the characteristics of the task, and the rigour with which he or she applies the strategy as a function of the motivating characteristics of the environment in which the task is encountered. The implications of differences in subjects' and experimenters' assumptions about which strategies are appropriate in experimental studies are examined, as are the implications of the differences between the motivating aspects of experimental and applied settings on both performance and on the generatizability of the results of experiments to applied judgemental forecasting. 相似文献
12.
Forecasting the Term Structure of Interest Rates Using Integrated Nested Laplace Approximations
下载免费PDF全文

This article discusses the use of Bayesian methods for inference and forecasting in dynamic term structure models through integrated nested Laplace approximations (INLA). This method of analytical approximation allows accurate inferences for latent factors, parameters and forecasts in dynamic models with reduced computational cost. In the estimation of dynamic term structure models it also avoids some simplifications in the inference procedures, such as the inefficient two‐step ordinary least squares (OLS) estimation. The results obtained in the estimation of the dynamic Nelson–Siegel model indicate that this method performs more accurate out‐of‐sample forecasts compared to the methods of two‐stage estimation by OLS and also Bayesian estimation methods using Markov chain Monte Carlo (MCMC). These analytical approaches also allow efficient calculation of measures of model selection such as generalized cross‐validation and marginal likelihood, which may be computationally prohibitive in MCMC estimations. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
13.
Josephine W. C. Kwan K. Lam Mike K. P. So Philip L. H. Yu 《Journal of forecasting》2000,19(6):485-498
In this paper, we consider the price trend model in which it is assumed that the time series of a security's prices contain a stochastic trend component which remains constant on each of a sequence of time intervals, with each interval having random duration. A quasi‐maximum likelihood method is used to estimate the model parameters. Optimal one‐step‐ahead forecasts of returns are derived. The trading rule based on these forecasts is constructed and is found to bear similarity to a popular trading rule based on moving averages. When applying the methods to forecast the returns of the Hang Seng Index Futures in Hong Kong, we find that the performance of the newly developed trading rule is satisfactory. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
14.
Jan Prüser 《Journal of forecasting》2019,38(7):621-631
Forecasting with many predictors provides the opportunity to exploit a much richer base of information. However, macroeconomic time series are typically rather short, raising problems for conventional econometric models. This paper explores the use of Bayesian additive regression trees (Bart) from the machine learning literature to forecast macroeconomic time series in a predictor‐rich environment. The interest lies in forecasting nine key macroeconomic variables of interest for government budget planning, central bank policy making and business decisions. It turns out that Bart is a valuable addition to existing methods for handling high dimensional data sets in a macroeconomic context. 相似文献
15.
Spyros Makridakis Andreas Merikas Anna Merika Mike G. Tsionas Marwan Izzeldin 《Journal of forecasting》2020,39(1):56-68
Marine transport has grown rapidly as the result of globalization and sustainable world growth rates. Shipping market risks and uncertainty have also grown and need to be mitigated with the development of a more reliable procedure to predict changes in freight rates. In this paper, we propose a new forecasting model and apply it to the Baltic Dry Index (BDI). Such a model compresses, in an optimal way, information from the past in order to predict freight rates. To develop the forecasting model, we deploy a basic set of predictors, add lags of the BDI and introduce additional variables, in applying Bayesian compressed regression (BCR), with two important innovations. First, we include transition functions in the predictive set to capture both smooth and abrupt changes in the time path of BDI; second, we do not estimate the parameters of the transition functions, but rather embed them in the random search procedure inherent in BCR. This allows all coefficients to evolve in a time-varying manner, while searching for the best predictors within the historical set of data. The new procedures predict the BDI with considerable success. 相似文献
16.
Meade N 《Journal of forecasting》1988,7(4):235-244
"The main theme of this paper is an investigation into the importance of error structure as a determinant of the forecasting accuracy of the logistic model. The relationship between the variance of the disturbance term and forecasting accuracy is examined empirically. A general local logistic model is developed as a vehicle to be used in this investigation. Some brief comments are made on the assumptions about error structure, implicit or explicit, in the literature." The results suggest that "the variance of the disturbance term, when using the logistic to forecast human populations, is proportional to at least the square of population size." 相似文献
17.
Four options for modeling and forecasting time series data containing increasing seasonal variation are discussed, including data transformations, double seasonal difference models and two kinds of transfer function-type ARIMA models employing seasonal dummy variables. An explanation is given for the typical ARIMA model identification analysis failing to identify double seasonal difference models for this kind of data. A logical process of selecting one option for a particular case is outlined, focusing on issues of linear versus non-linear increasing seasonal variation, and the level of stochastic versus deterministic behavior in a time series. Example models for the various options are presented for six time series, with point forecast and interval forecast comparisons. Interval forecasts from data-transformation models are found to generally be too wide and sometimes illogical in the dependence of their width on the point forecast level. Suspicion that maximum likelihood estimation of ARIMA models leads to excessive indications of unit roots in seasonal moving-average operators is reported. 相似文献
18.
In this paper we consider the problem facing a company in selecting the values of bids to submit on a sequence of contracts put out to tender. A simple-to-implement Bayesian forecasting model is presented, based on a steady Dirichlet process whose states are indexed by the possible bid decisions open to the company. The model gives an explicit algorithm for calculating the state probabilities, needing only data on the lowest bid made by the company's competitors. The flexibility of the basic model makes it a potentially powerful forecasting system for use by companies bidding for contracts. 相似文献
19.
We compare the accuracy of vector autoregressive (VAR), restricted vector autoregressive (RVAR), Bayesian vector autoregressive (BVAR), vector error correction (VEC) and Bayesian error correction (BVEC) models in forecasting the exchange rates of five Central and Eastern European currencies (Czech Koruna, Hungarian Forint, Slovak Koruna, Slovenian Tolar and Polish Zloty) against the US Dollar and the Euro. Although these models tend to outperform the random walk model for long‐term predictions (6 months ahead and beyond), even the best models in terms of average prediction error fail to reject the test of equality of forecasting accuracy against the random walk model in short‐term predictions. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
20.
Jakub Bijak George Disney Allan M. Findlay Jonathan J. Forster Peter W.F. Smith Arkadiusz Winiowski 《Journal of forecasting》2019,38(5):470-487
Migration is one of the most unpredictable demographic processes. The aim of this article is to provide a blueprint for assessing various possible forecasting approaches in order to help safeguard producers and users of official migration statistics against misguided forecasts. To achieve that, we first evaluate the various existing approaches to modelling and forecasting of international migration flows. Subsequently, we present an empirical comparison of ex post performance of various forecasting methods, applied to international migration to and from the United Kingdom. The overarching goal is to assess the uncertainty of forecasts produced by using different forecasting methods, both in terms of their errors (biases) and calibration of uncertainty. The empirical assessment, comparing the results of various forecasting models against past migration estimates, confirms the intuition about weak predictability of migration, but also highlights varying levels of forecast errors for different migration streams. There is no single forecasting approach that would be well suited for different flows. We therefore recommend adopting a tailored approach to forecasts, and applying a risk management framework to their results, taking into account the levels of uncertainty of the individual flows, as well as the differences in their potential societal impact. 相似文献