共查询到20条相似文献,搜索用时 95 毫秒
1.
Legendre小波神经网络 总被引:1,自引:0,他引:1
在BP神经网络的基础上,结合Legendre小波构造了Legendre小波神经网络。由于Legenure小波在区间[0,1)上具有分段表达式并且为多项式的特点,因而构造的Legendre小波神经网络有结构简单、收敛速度快等优点。以神经网络的BP算法作为Lengendre小波神经网络的学习算法,用有6个Legenqdre小波基函数的Legendre小波神经网络对一个函数进行逼近分析,得到了较好的逼近效果。 相似文献
2.
变形监测是安全化、信息化工程建设和管理的重要内容,贯穿于建筑物设计、施工和运营整个过程.本文基于小波分析、BP神经网络、小波分析与神经网络结合的相关理论,借助MATLAB编程,建立了改进的BP神经网络、辅助式小波神经网络、嵌入式小波神经网络3种变形预测网络模型.结合工程实测数据,利用建立的3种模型,分别应用累积沉降和期间沉降不同模式数据进行预测.结果表明,两种小波神经网络组合模型的预测效果明显优于单一的BP神经网络模型,具有更高预测精度和更快的收敛速度,且训练样本数目越多,模型精度越高,预测效果越好. 相似文献
3.
结合小波变换和BP神经网络,建立一种网络流量预测模型.首先对流量时间序列进行小波分解,得到多个尺度的小波系数序列,以系数序列和原来的流量时间序列分别作为模型的输入和输出,构造人工神经网络并且加以训练.用实际网络流量对该模型进行验证,结果表明,该模型具有较高的预测效果. 相似文献
4.
基于小波神经网络的短时客流量预测研究 总被引:1,自引:0,他引:1
提出了基于小波神经网络的短时客流预测方法。对具有动态性,受多种因素影响的城轨的客流量进行短时的预测。通过建立小波神经网络对于城轨进行每隔15 min客流量预测。示例结果表明,所建立的小波神经网络的预测模型比其他的典型的预测模型预测精度高,误差小。 相似文献
5.
基于混合学习算法的模糊小波神经网络控制 总被引:7,自引:0,他引:7
采用小波函数作为模糊隶属函数,将模糊控制与神经网络相结合,利用神经网络实现模糊推理.针对BP算法易陷入局部极值点的缺点和简单遗传算法局部搜索能力差的不足,提出了一种混合学习算法,即首先利用遗传算法全局搜索的特点来离线优化神经网络的参数,再利用BP算法较强的局部搜索能力对网络参数进行在线调整.仿真结果表明,该网络能对不同的对象实施有效控制,且具有快速、适应性强等特点. 相似文献
6.
在燃气负荷预测中,由于日负荷的不稳定,仅以历史负荷为训练样本得到的人工神经网络难以满足日预测的精度要求。提出一种小波分析与BP神经网络相结合的预测方法。首先,将历史负荷序列进行小波分解成概貌序列和细节序列,并在此基础上利用概貌序列、细节序列,以及指数平滑和温度等多种因素训练BP神经网络,预测出未来燃气的日负荷。最后,对... 相似文献
7.
基于小波神经网络的化工安全评估 总被引:1,自引:0,他引:1
鉴于传统神经网络方法解决非线性问题收敛速度慢,易陷入局部最优解的缺陷,本文通过对小波神经网络的结构及学习算法的简要介绍,结合神经网络的自学习能力,提出一种充分利用小波变换时频局部化性质的小波神经网络安全评价方法,通过用小波神经网络评价方法与BP神经网络评价方法对某大型炼油化工厂相应原始数据进行分析、对比,表明该小波神经网络评价方法较BP神经网络评价方法收敛迅速,绝对误差小,预测精度高。 相似文献
8.
9.
提出了一种基于小波变换预处理的神经网络法的字符识别法,利用小波变换对字符进行了预处理,提取文字字符的主要能量特征,减少了字符特征识别的维数,与直接采用神经网络方法进行字符识别相比,所用的神经网络规模小,收敛速度快,能有效识别含有噪声的低质量模糊文字字符. 相似文献
10.
小波神经网络是将小波理论和神经网络理论结合起来的一种神经网络,小波神经网络结合了小波变换良好的时频局域化性质及神经网络的自学习功能,它有很好的逼近、容错能力.文章综述了小波神经网络的主要模型、算法和其它相关问题,最后展望了小波神经网络今后的研究方向. 相似文献
11.
利用残值学习算法进行小波节点的选择,利用Akaike 准则确定预测模型的结构,采用误差反传方法在线调整网络连接参数.通过建立的自适应神经网络模型有效辨识船舶操纵运动动态.船舶航向预报仿真结果显示,基于小波神经网络的船舶航向预测器可以较高精度预报船舶操纵运动过程中船舶航向的变化. 相似文献
12.
针对无线传感器网络传输过程中容易受到噪音干扰的问题,提出了一种新的业务流预测算法AWNNP(Ant colony-based Wavelet Neural Network Prediction).该算法首先利用小波变换对业务流进行分解,并将其小波系数和尺度系数作为样本数据.其次,结合蚁群算法和神经网络来训练样本数据,采用小波模型重构进行重构,以此获得业务流的预测数据.同时,通过仿真实验对比,并分析了小波神经网络预测算法和BP神经网络预测算法,实验结果表明,AWNNP算法性能较优,其误差为16.21%. 相似文献
13.
针对传统摄像机标定方法需要建立复杂的数学模型,且计算量大、实时性不好的问题,引入了人工神经网络来有效处理非线性映射问题,准确地建立起立体视觉中三维空间特征点与它在图像平面上像点之间的非线性关系;但现有的神经网络标定法仍存在实时性差、标定精度不够、泛化能力差的缺点,于是该文提出了一种基于小波神经网络(waveletneuralnetwork,WNN)的方法,同时用粒子群优化算法对学习算法进行改进,并对小波网络与BP网络的标定结果进行比较.实验结果表明,基于小波神经网络的双目视觉标定方法能够达到较高的实时性、标定精度和泛化能力的要求. 相似文献
14.
基于径向基神经网络的股价预测 总被引:3,自引:0,他引:3
借助径向基函数(Radial Basis Function)神经网络对非线性函数的逼近能力,对深能源A股价这个时间列作了连续若干天的一步预测,并与其他预测方法进行了比较。结果表明,用径向基神经网络预测股价是可行的和有效的。 相似文献
15.
龚亚琴 《陕西理工学院学报(自然科学版)》2007,23(2):87-90
提出一种非线性时间序列预测方法,即把小波分析结合RBF神经网络预测方法对非线性时间序列进行预测。对铜价的预测结果表明,该方法比单纯的小波预测或单纯的RBF网络预测精度高,可以很好的应用于某些非线性时间序列的预测中。 相似文献
16.
小波变换集遗传算法神经网络的径流预测建模 总被引:1,自引:0,他引:1
为获得更精确的径流预报结果,利用dmey小波变换对径流时间序列分解为高频信号和低频信号,再使用遗传算法优化的BP神经网络分别对其进行预测,最后利用dmey小波逆变进行重构,以此建立径流总量预测模型。通过对柳江径流总量进行实例分析,并与遗传算法优化的神经网络模型、BP神经网络模型及传统的时间序列分析方法对比,该方法获得更准确的预测结果。研究结果表明该模型能充分反映径流时间序列趋势,预报稳定性好,预报准确率高,为径流时间序列预测提供一个有效建模方法。 相似文献
17.
针对一类未知非线性系统,设计了一种基于小波神经网络的自适应控制器,并提出了一种适合在线学习的参数混合训练算法。根据离线和在线学习系统的特性,得到小波神经网络控制器的初始参数,使用混合训练算法在线修正控制律,实现了自适应控制。仿真结果验证了该控制方案的有效性。 相似文献
18.
随着网络控制研究的兴起,对工业以太网延时进行补偿成为研究的重点方向.针对网络延时给网络控制系统带来的问题,提出用小波神经网络对工业以太网延时进行预测,根据输入的过去时间延迟序列预测输出下一采样时刻的网络延时值.预测模型的参数通过训练算法实时更新,以保证预测输出的准确性.对实际工业以太网延时数据样本的预测分析表明,该预测模型能够有效预测延时.为进一步说明延时预测效果,将延时预测模型应用于网络控制系统进行延时的预测与补偿,系统仿真结果证明了预测模型预测的准确性及补偿的有效性. 相似文献
19.
针对图像压缩中压缩率与图像质量的折衷问题。综合利用小波变换和神经网络各自的优点,采用小波和神经网络的方法进行图像压缩.该算法先对图像进行小波分解,保留低频系数,然后将高频系数输入训练的网络进行矢量量化编码达到压缩的目的.最后根据保留的低频系数和还原的高频系数重构图像. 相似文献
20.
针对已有注视点预测模型存在特征细节缺失、尺度单一和背景信息干扰严重导致的注视点预测精度偏低等问题,提出了一种基于超复数小波和图像空域的卷积网络融合注视点预测算法.首先,针对细节特征丢失问题,使用超复数小波变换在频域中提取图像的细节特征,与卷积网络提取的空域特征进行融合.然后,通过空洞空间金字塔池化模块,融合不同感受得到的特征图,有效解决了特征尺度单一的问题.最后,引入了残差卷积注意力模块,结合空间和通道的注意力机制,能够有效抑制背景信息的干扰,提高注视点预测精度.在SALICON数据集上,CC、sAUC和SIM评价指标下,该算法的性能达到0.884 7、0.769 3和0.778 0;在CAT2000数据集上,该算法在相应指标下的性能为0.735 5、0.870 1和0.664 5.主客观对比实验结果表明,该算法具有较好的注视点预测能力. 相似文献