首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
令S?V(G),κ_G(S)表示图G中内部不交的S-树T_1,T_2,…,T_r的最大数目r,使得对任意i,j∈{1,2,…,r}且i≠j,有V(T_i)∩V(T_j)=S,E(T_i)∩E(T_j)=?.定义κ_k(G)=min{κ_G(S)|S?V(G),且|S|=k}为图G的广义k-连通度,其中k是整数,且2≤k≤n.令Sym(n)是在{1,2,…,n}上的对称群,T是Sym(n)的对换集合.G(T)表示点集是{1,2,…,n},边集是{ij|(ij)∈T}的图.若G(T)是一个轮图,则将Cayley图Cay(Sym(n),T)简记为WG_n.主要研究由轮生成的Cayley图WG_n的广义3-连通度,并证明κ_3(WG_n)=2n-3,其中n≥4.  相似文献   

2.
具有n个顶点的图G(n≥3)是k-可序哈密顿-连通的(k是整数,且2≤k≤n),如果对于G中每一个具有k个不同顶点的可序集合S={v1v2,…,vk},都存在G中的哈密顿路P包含S且不改变其中元素的次序.本文证明了:对于具有n个顶点的图G,u、v是G中任意两个不相邻的顶点,且d(u)+d(v)≥n+1.如果G是「k+1/2﹁-连通的k-可序图,k是整数且2≤k≤n/12,则G是k-可序哈密顿-连通图.  相似文献   

3.
本文所研究的图G的变换图G++-是以V(G)∪E(G)作为顶点集的图,它的两个顶点u与v被一条边连接当且仅当下列情形之一成立:(ⅰ)如果u,v∈V(G),那么它们在G中邻接.(ⅱ)如果u,v∈E(G),那么它们在G中邻接.(ⅲ)如果u与v一个属于V(G)而另一个属于E(G),那么它们在G中不关联.文章给出了变换图G++-的连通度的一个下限.  相似文献   

4.
令Sn是具有n个顶点没有两个等长圈的简单图的集合,若Sn中不存在图G′使│E(G′)│>│E(G)│,则称图G是简单MCD图,若简单MCD图G是2连通的,则称G是2连通简单MCD图,若G中一条路P的两个内点u都有dG(v)=2,则称P为G的简单路,一个2连通可平面图G称为广义多边形路,如果用下述方法得到图G是路,对应于G的每个内部面f(G-是G的平图)有一个G*的顶点f*,G*的两个顶点f*和g*,在G*中相邻当且仅当G-中相应的两个内部面的边界交于一条G-的简单路,作者证明了下述结果,当且仅当n∈{10,11,14,15,16,21,22}时,存在n个顶点的非广义多边形路的2连通简单MCD图。  相似文献   

5.
简单连通图的反比度和几何反比度   总被引:1,自引:1,他引:1  
反比度和几何反比度是Graffiti猜想程序中首先出现的关于图的两个量。本文研究了它们的性质,从面确定其上下界。  相似文献   

6.
引入图的粘合的概念,讨论了极大临界4连通图的性质,给出了一个图是这类图的一个充分必要条件,由此给出该类图的一种新的构造方法.  相似文献   

7.
有向图和二部有向图连通度的下界已由Hellwing和Volkmann给出.定向图是没有二圈的有向图.文章研究了这类特殊的有向图-定向图,同时通过改进Hellwing等人的证明方法,得到了定向图和二部定向图连通度的更好的下界.  相似文献   

8.
用k1>0和δi表示图Gi(i=1,2)的连通度和最小度,给出了无向图强乘积的连通度一个下界κ(G1(□×)G2)≥min{κ1(1+δ2),k2(1+δ1)}.  相似文献   

9.
如果G中任意s个点的导出子图中至少含有t条边,则称图G为[s,t]-图。证明了:设G是连通、局部2-连通的[4,2].图,则G或者含有与K1.1,1.3同构的子图,或者是路可扩的。  相似文献   

10.
本文证明了无可收缩边的4-连通图是两类特殊的4-正则图.这一结果推广了M.Fontet在[7]和[8]中的结论.  相似文献   

11.
如果图G的每对不同顶点u和v之间都有哈密顿路相连,则称G是哈密顿连通的;而如果对于所有满足条件以d(u,v)≤q≤n-1的整数q,u和v之间有长为q路相连,则和G是泛连通的,其中以d(u,v)是u和v间的距离,而n是G的顶点数。本文证明了下述两个结果:(1)2k+1个顶点的k正则简单图是哈密顿连通的,(2)k连通国中任何两顶点之间存在k-1条长度不同的路;进而如果G的顶点数小于2k,则G是泛连通的。  相似文献   

12.
连通图G所谓的l-边-连通度(Z—edge—connectivity),就是使图C成为至少l个分支所必须去掉的最少边数,记作λl(G),即λ1(G)=min{|E’|:E’真包含E(G),ω(G—E’)≥l}.研究了完全2-分图的l-边-连通度,得到了定理:设G=G[V1,V2]是一个完全2-分图,|V1|=r,|V2|=s,r+k=s,k≥0为整数.则图G的(k+2)-边-连通度为(k+1),即λk+2(G)=r(k+1).  相似文献   

13.
介绍了l-边-连通度的定义及定义在抽象群上的Cayley图;利用构造最小l-序列边割的方法,结合Cayley图的性质,研究了3-正则Cayley图的l-边-连通度;给出并证明了l为2、3、4时的l-边-连通度λl(G);同时,给出了对n-正则Cayley图的l-边-连通度的推论.  相似文献   

14.
如果G中任意s个点的导出子图中至少含有t条边,则称图G为[s,t]-图.本文证明了若G是3-连通[6,2]-图,则G或者含有Hamilton路或者同构于K5∨G3.其中,G3是含有3个点的任意图.  相似文献   

15.
广义deBruijn有向图G1(n,d)的顶点集为(0,1,…,n-1)弧集为i→d(n-1-i)+r(modn),0≤i≤n-1,0≤r≤d-1,本文证明,如果G1(n,d)的直径不小于5,那么经的连通度等于d当且仅当g.c.d,(n,d)≥2,而且n能被d+1整除。  相似文献   

16.
设图G是一个连通图,S⊆V(G)。图G的一棵S-斯坦纳树是一棵包含S中所有顶点的树T=(V ',E '),使得S⊆V '。如果连接S的两棵斯坦纳树T和T ',满足E(T)∩E(T ')=且V(T)∩V(T ')=S,则称T和T '是内部不交的。定义κ(S)为图G中内部不相交S-斯坦纳树的最大数目。广义k-连通度(2≤k≤n)定义为κk(G)=min{κ(S)|S⊆V(G)且|S|=k},显然,κ2(G)=κ(G)。证明了κ3(FQn)=n,其中FQn是n-维折叠超立方体。  相似文献   

17.
给出了图的邻接矩阵和拟-Laplacian矩阵分别依赖于点连通度、边连通度和顶点最小度的最大特征值的一些紧的上界,且得到了所有的极图。  相似文献   

18.
关于广义棱连通度的一个注记   总被引:2,自引:3,他引:2  
将广义棱α(G)的定义推广到m+1个同构图的情形,定义了图a^m(G),得到广义棱矿(G)的点连通度和边连通度的几个性质.  相似文献   

19.
樊陈  雷梦灵 《科技信息》2010,(16):78-78
连通度、边连通度是刻画图的连通程度的重要参照,按照图的连通程度进行分类,连通图是1-连通图,没有割点的图是2-连通图,3-连通图作为这一分类下的一类也具有若干性质。  相似文献   

20.
设G是任一连通图,H是G的邻接树图,κ(H),λ(H),δ(H)分别是H的连通度,边连通度和最小次,则κ(K)=λ(H)=δ(H)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号