首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
合成了4,4'-双酚芴二炔丙基醚(DPO-BPF)和4,4'-二苯醚二炔丙基醚(DPO-BPE),将两种芳基二炔丙基醚与含硅芳炔(PSA)树脂通过溶液和熔融法制得改性的PSA。对改性PSA树脂的固化反应、树脂浇铸体的热稳定性和力学性能进行了研究。结果表明:相比于PSA树脂,加入两种芳基二炔丙基醚改性的PSA树脂的固化反应起始温度变化小,固化反应峰值温度升高。改性PSA树脂在氮气中的热稳定性随加入芳基二炔丙基醚质量分数的增加而下降,30%(质量分数)的DPO-BPF改性PSA树脂固化物在氮气中5%热失重温度(T_(d5))为559℃,800℃残留率为87%。DPO-BPE和DPO-BPF改性PSA树脂浇铸体的力学性能高于纯PSA树脂浇铸体的力学性能,20%(质量分数)DPO-BPE改性PSA树脂浇铸体的弯曲强度和冲击强度可达51.6 MPa和5.2 kJ/m~2,分别比纯PSA树脂浇铸体的相应值增加了137%和136%;动态热力学分析可知改性后PSA树脂浇铸体在500℃内未发现玻璃化转变。改性PSA树脂力学性能显著提高,耐热性能优异,可用作耐热、结构一体化轻质材料。  相似文献   

2.
采用对苯二胺分别与甲基氢二氯硅烷(MeHSiCl2)或二甲基二氯硅烷(Me2SiCl2)胺解,以间氨基苯乙炔(APA)封端,制备含端炔基聚碳硅氮烷PCSN-A和PCSN-B。用FT-IR对其结构进行了表征,通过DSC研究了聚合物固化行为,采用TGA和XRD对其固化物的耐热性能和陶瓷化性能进行了研究。结果表明,PCSN-A由于结构内含有硅氢键(Si—H),Si—H键可参与固化,提高交联密度,其固化物具有优异于PCSN-B的耐热性能和陶瓷化性能,氮气下失重5%的温度(Td5)为564℃。氩气下1 450℃裂解的陶瓷化率为78.4%,得到β-SiC,α-SiC和α-Si3N4陶瓷,聚碳硅氮烷可用作耐高温树脂基体和陶瓷前驱体。  相似文献   

3.
羟基封端聚甲基苯基硅氧烷与双酚F环氧树脂进行接枝聚合反应制备了有机硅改性环氧树脂,研究了催化剂、反应温度、反应时间对产物的影响.最佳反应条件是:催化剂为三苯基膦,反应温度为120~150℃,反应时间为7~9h.讨论了聚甲基苯基硅氧烷含量对改性环氧树脂粘结性能的影响.研究结果显示,改性环氧树脂耐高温粘接性能较双酚F环氧树脂明显提高,当聚甲基苯基硅氧烷与双酚F环氧树脂质量配比为1∶4时,制备的改性环氧树脂固化物经300℃12h后剪切强度仍可达到5.4 MPa,适于用作耐高温胶粘剂.并采用FT-IRTGA等手段对产物进行了表征.  相似文献   

4.
四(3-乙炔苯胺)基硅烷(TEAS)具有合成简单、溶解性好、固化温度低且固化后耐热性好等优异的性能,但以其作为基体树脂制得的玻璃纤维增强复合材料的力学性能较低。将双(N-间乙炔基苯基邻苯二甲酰亚胺)醚(DAIE)与四(3-乙炔苯胺)基硅烷(TEAS)以适当的比例混合,制得复合材料基体树脂,即TEAS-DAIE。用TEAS-DAIE与玻璃纤维复合制得复合材料,并研究了该复合材料的耐热性、力学性能、介电性能、吸水性、断面形貌等。结果表明:复合材料具有优良的力学性能,其在常温下的弯曲强度为385.7 MPa,240℃下的弯曲强度达到373.1 MPa,保留率为96.7%,玻璃化转变温度362.5℃;复合材料具有优良的耐水性能和介电性能,常温下材料在水中浸泡96 h,其吸水率为1.06%,介电常数(ε)为3.95,介电损耗角正切值(tanδ)为5.73×10-3。  相似文献   

5.
通过间乙炔基苯基重氮盐和联苯酚醛树脂(BN)之间的偶合反应,合成新型的加成固化型间乙炔基苯偶氮联苯型酚醛树脂(EPABN)。采用傅里叶红外光谱(FT-IR)、凝胶渗透色谱(GPC)、核磁共振氢谱(1H-NMR)、差示扫描量热法(DSC)和热重分析(TG)等检测手段表征EPABN树脂的结构和性能。研究结果表明:EPABN树脂分子结构中成功引入乙炔基苯基团;通过乙炔基的偶联反应,EPABN树脂自交联固化物形成芳环等刚性或交联结构;当EPABN树脂的自固化产物的质量损失率为5%和10%,热分解温度分别为460℃和527℃,与联苯酚醛树脂相比分别提高59℃和75℃;EPABN树脂固化物在700℃和1 000℃时氮气氛围残炭率分别为77.9%和70.4%,较联苯酚醛树脂分别提高20.8%和17.1%;EPABN树脂具有优异的耐热性和耐烧蚀性能,有望作为耐烧蚀材料在航空航天领域得到应用。  相似文献   

6.
四(3-乙炔苯胺)基硅烷(TEAS)具有合成简单、溶解性好、固化温度低且固化后耐热性好等优异的性能,但以其作为基体树脂制得的玻璃纤维增强复合材料的力学性能较低。将双(N间乙炔基苯基邻苯二甲酰亚胺)醚(DAIE)与四(3-乙炔苯胺)基硅烷(TEAS)以适当的比例混合,制得复合材料基体树脂,即TEAS—DAIE。用TEAS—DAIE与玻璃纤维复合制得复合材料,并研究了该复合材料的耐热性、力学性能、介电性能、吸水性、断面形貌等。结果表明:复合材料具有优良的力学性能,其在常温下的弯曲强度为385.7MPa,240℃下的弯曲强度达到373.1MPa,保留率为96.7%,玻璃化转变温度362.5℃;复合材料具有优良的耐水性能和介电性能,常温下材料在水中浸泡96h,其吸水率为1.06%,介电常数(e)为3.95,介电损耗角正切值(tand)为5.73×10^-3。  相似文献   

7.
八马来酰亚胺基苯基POSS/BT树脂固化行为   总被引:2,自引:0,他引:2  
合成了八马来酰亚胺基苯基POSS(OMPS),并对产物进行了测试表征。将OMPS与4,4′-双马来酰亚胺基二苯甲烷(BMI)/双酚A型氰酸酯(BCE)(BT树脂)进行共混,差示量热扫描仪(DSC)和傅立叶红外光谱仪(FT-IR)测试结果表明,在220℃左右,OMPS/BT树脂固化反应能充分进行;在140~220℃范围内分段固化,动态粘弹分析仪(DMA)测试结果显示固化后树脂的Tg不高,250℃下固化1h后,DMA测试结果显示Tg有明显提高。OMPS/BT树脂复合材料的介电测试结果显示,加入适量的OMPS能明显降低BT树脂的介电常数。  相似文献   

8.
采用含苯并噁嗪环的烯丙基腈基树脂(BCN)和环氧树脂(EP)对腈基树脂预聚体(PNP)进行改性,表征了改性树脂的固化行为、加工性能、预浸料的可加工性及其玻纤(GF)复合材料常温和老化后的力学性能、耐热性能和微观结构.结果表明,PNP/BCN/EP树脂可满足湿法预浸料工艺,预浸料可折叠,不掉粉,且有一定粘性; PNP/BCN/EP/GF复合材料的常温弯曲模量和弯曲强度分别为22.61 GPa和791.41 MPa;经300℃/72 h老化后,弯曲模量和弯曲强度保持率达98%和96%,质量保持率大于99%;可望在300℃左右的高温环境下服役.  相似文献   

9.
以聚己二酸一缩二乙二醇酯(PADG)、异佛尔酮二异氰酸酯(IPDI)和1,4-丁炔二醇(BD)通过聚加成反应,合成分子中含多个活性炔基的线性聚氨酯树脂,并利用红外和拉曼光谱进行表征.以三羟甲基丙烷三(3-巯基丙酸酯)(TTMP)为交联剂,制备系列巯基-炔紫外光固化聚氨酯薄膜(F-SAPU)及涂层(C-SAPU).根据扩链参数、硬段质量分数、固化参数和光引发剂参数对巯基-炔紫外光固化树脂合成及固化进行配方设计.结果表明,通过调节配方参数,F-SAPU的拉伸强度、断裂伸长率分别在0.48~5.32 MPa和106%~172%内灵活可调,玻璃化转变温度在-10.1~26.9℃内灵活可调;探究了不同硬段质量分数对C-SAPU涂层性能的影响,当硬段质量分数为45%时,涂层性能最优.  相似文献   

10.
以聚己二酸一缩二乙二醇酯(PADG)、异佛尔酮二异氰酸酯(IPDI)和1,4-丁炔二醇(BD)通过聚加成反应,合成分子中含多个活性炔基的线性聚氨酯树脂,并利用红外和拉曼光谱进行表征.以三羟甲基丙烷三(3-巯基丙酸酯)(TTMP)为交联剂,制备系列巯基-炔紫外光固化聚氨酯薄膜(F-SAPU)及涂层(C-SAPU).根据扩链参数、硬段质量分数、固化参数和光引发剂参数对巯基-炔紫外光固化树脂合成及固化进行配方设计.结果表明,通过调节配方参数,F-SAPU的拉伸强度、断裂伸长率分别在0.48~5.32 MPa和106%~172%内灵活可调,玻璃化转变温度在-10.1~26.9℃内灵活可调;探究了不同硬段质量分数对C-SAPU涂层性能的影响,当硬段质量分数为45%时,涂层性能最优.  相似文献   

11.
以4-氨基苯氧邻苯二甲腈(BZN)、间氨基苯乙炔(APA)和多聚甲醛为原料制备了含氰基和乙炔基的苯并噁嗪树脂(BZ-BPA)。利用差示扫描量热法(DSC)、傅里叶变换红外光谱法(F T-IR)、热重分析法(TGA)分析了BZ-BPA的固化行为,得到:BZ-BPA在固化反应过程中存在两个放热峰(225℃和274℃);在氮气氛围下,BZ-BPA固化物热失重5%的温度(T d5)为502.6℃,800℃时质量残留率为79.8%;在空气氛围下,T d5为506.0℃,800℃时质量残留率为29.6%。采用Kissinger法计算得到两个固化反应的表观活化能(E):E1=228.31 kJ/mol,E2=87.97 kJ/mol;由Ozawa法计算得到:E1=225.98 kJ/mol,E2=92.26 kJ/mol;固化反应接近一级反应。考察了石英纤维增强的BZ-BPA复合材料(QF/BZ-BPA)的力学性能和耐热性能,结果显示:QF/BZ-BPA的玻璃化转变温度(Tg)为476℃;在常温下其弯曲强度为764.2 MPa,层间剪切强度为57.3 MPa;在400℃热处理2 h后,其弯曲强度为614.5 MPa,层间剪切强度为38.1 MPa;400℃热处理10 h后,其质量损失仅为2.4%。以上结果表明BZ-BPA复合材料具有优异的力学性能和耐热性能。  相似文献   

12.
利用不同官能度、不同分子量的端氨基聚醚与环氧树脂E44复配出可用于非开挖管道修复的复合树脂,分别测试了不同配方组成的弯曲强度和剪切强度,得到了性能较优的配方组成,并利用差示扫描量热仪(DSC)对其固化反应过程进行了监测。监测结果表明:该复合树脂弯曲强度可达35.4 MPa,剪切强度可达8.1 MPa;固化反应放热为152 J/g,固化反应的固化温度为54.01℃。  相似文献   

13.
以4-氨基苯氧邻苯二甲腈(BZN)、间氨基苯乙炔(APA)和多聚甲醛为原料制备了含氰基和乙炔基的苯并噁嗪树脂(BZ-BPA)。利用差示扫描量热法(DSC)、傅里叶变换红外光谱法(FT-IR)、热重分析法(TGA)分析了BZ-BPA的固化行为,得到:BZ-BPA在固化反应过程中存在两个放热峰(225℃和274℃);在氮气氛围下,BZ-BPA固化物热失重5%的温度(Td5)为502.6℃,800℃时质量残留率为79.8%;在空气氛围下,Td5为506.0℃,800℃时质量残留率为29.6%。采用Kissinger法计算得到两个固化反应的表观活化能(E):E1=228.31 kJ/mol,E2=87.97 kJ/mol;由Ozawa法计算得到:E1=225.98 kJ/mol,E2=92.26 kJ/mol;固化反应接近一级反应。考察了石英纤维增强的BZ-BPA复合材料(QF/BZ-BPA)的力学性能和耐热性能,结果显示:QF/BZ-BPA的玻璃化转变温度(T<...  相似文献   

14.
采用亲核取代反应, 通过A2+B3方法制备含联苯结 构氟封端超支化聚醚醚酮(HPDEEK-F), 用4-苯乙炔苯酚与得到的氟封端聚合物反应, 制得苯乙炔封端的超支化聚醚醚酮(HPDEEK-PEP), 并研究了其结构和性能. 结果表明, 苯乙炔封端聚合物的玻璃化转变温度高于氟封端聚合物的玻璃化转变温度, 热稳定性好于氟封端聚合物, 两种聚合物在极性溶剂中都具有良好的溶解性.  相似文献   

15.
以卤代双酚A及双酚S为原料,合成了五个含卤反应型阻燃剂:2,2-二[3,5-二溴-4-(2-羟乙氧基)-苯基]丙烷,2,2-二(3,5-二氟-4-(2-羟乙氧基)-苯基)丙烷,二[3,5-二溴-4-(2-羟乙氧基)苯基-]矾,2,2-二[3,5-二溴-4-羧甲氧基-苯基]丙烷,2,2-二[3,5-二氯-4-羧甲氧基-苯基]丙烷。用这些单体与顺丁烯二酸酐、邻苯二甲酸酐、丙二醇等,合成了十种阻燃不饱和聚酯树脂,测定了这些树脂的热机械性能、氧指数及热性能。得出如下结论:含溴双酚A型化合物的阻燃效果优于含氯的,但硫的引入对阻燃性并没有改善;含A22(卤代双酚二羧甲基醚)的树脂阻燃性远好于含D22(卤代双酚二羟乙基醚)的树脂,因此推广应用A22是很有价值的。  相似文献   

16.
使用双酚A(BPA)和4-乙烯基苄氯(VBC)为原料合成一种双酚A型乙烯基苄基醚(VLBPA)树脂,采用高效液相色谱、红外光谱分析和核磁共振氢谱表征方法,确定了产物结构,探究了产物的最优合成条件。在145℃/1.5 h+175℃/2 h+210℃/4h固化条件下制备VLBPA固化物,并测试了其热学性能和介电性能。结果表明,产物的最优合成条件为:n(BPA)∶n(VBC)∶n(NaOH)=1.0∶2.8∶2.4,反应时间7 h,该条件下产物产率可达到92.76%。差示扫描量热(DSC)分析结果表明,VLBPA在117.7℃时存在融化的吸热峰,在156.3℃时存在乙烯基的交联放热峰。树脂固化物在N2气氛下5%热失重温度(T5%)达到了400.5℃,具有良好的热稳定性能;在频率10 GHz下,介电常数(Dk)为2.79,介质损耗(Df)为0.006 5。  相似文献   

17.
传统的液态成型双马来酰亚胺树脂(BMI)较低的韧性阻碍了其在航空航天领域的应用。通过在液态成型双马树脂网络中引入核壳粒子,利用核壳粒子具备独特的双层结构增韧改性双马树脂。采用扫描电子显微镜(SEM)对不同含量核壳粒子改性液态成型双马树脂体系断面形貌进行研究,SEM结果表明,改性的液态成型双马树脂固化物断裂表面的裂纹扩展明显受阻,显示韧性断裂形貌。研究了不同含量核壳粒子对液态成型双马树脂体系性能的影响,优选出最佳的核壳粒子含量。研究表明,改性固化物表现出优异的机械性能:拉伸强度108.8 MPa,提高了13.1%;断裂伸长率3.12%,提高了16.8%;弯曲强度190 MPa,提高了12.4%;KIC达到2.83 MPa/m1/2,提高了20.9%;GIc达到1619 J/m2,提高了54.6%;并且保持改性前树脂热性能及热失重性能,玻璃化转变温度Tg为292.3℃,5%热失重温度为401.0℃。  相似文献   

18.
采用旋转黏度计和流变仪考察了含硅芳炔树脂(PSA)和含炔丙基苯并噁嗪(P-BZ)共混改性PSA树脂熔体的流变行为,建立了树脂黏度-组分-温度的数学模型。结果表明,P-BZ共混改性PSA树脂可使树脂的加工窗口变宽,树脂在90~130℃的黏度随温度升高而下降,PSA树脂的熔体黏度随P-BZ的加入而降低,P-BZ的加入提高了PSA树脂的加工适用性;PSA树脂的黏度可通过加入P-BZ和升高加工温度进行预测和调控。PSA及其改性树脂的动态流变行为显示树脂熔体呈牛顿流体,P-BZ降低了PSA树脂熔体的储能模量和复数黏度。用双阿仑尼乌斯方程对PSA及其改性树脂在160~190℃的等温黏时曲线进行拟合,得到的经验模型表明当PSA树脂共混入质量分数为10%的P-BZ时,树脂的凝胶时间延长,而树脂凝胶固化活化能从84.50kJ/mol降至54.83kJ/mol。  相似文献   

19.
【目的】考察温度、固体含量对预固化脲醛树脂分子质量和化学结构的影响,为预固化行为的调控提供理论参考。【方法】采用凝胶色谱(GPC)和13C-NMR分析了脲醛树脂在相同预固化处理时间,不同温度、固体含量条件下的分子质量分布及主要官能团的变化,对比了温度、固体含量对树脂羟甲基、亚甲基和醚键的贡献率。【结果】在相同预固化处理时间下,随着固化温度的升高,树脂的数均和重均分子质量均显著增大,伴随二亚甲基醚键总量先增大再减小趋势,端基羟甲基以及链状羟甲基结构含量下降,链状和网状亚甲基基团含量增大。在相同预固化处理时间下,高固体含量树脂的相对分子质量比低固体含量树脂的低,但高固体含量树脂间分子质量相差不大,尽管固体含量的增大使链状羟甲基结构、二亚甲基键和二亚甲基醚键含量略有上升,但对端基羟甲基结构和总量影响不大。【结论】通过对比温度和固体含量对羟甲基、亚甲基和醚键的贡献率可知,与固体含量相比,温度对树脂预固化行为的影响更显著。  相似文献   

20.
聚(间二乙炔基苯-甲基氢硅烷)(PSA)和含乙炔基苯并噁嗪树脂(A-PBZ)在热作用下均能够聚合形成交联网状结构。研究了PSA/A-PBZ共混树脂(SB)的固化行为。通过红外光谱(FT-IR)、旋转流变仪和差示扫描量热仪(DSC)研究了PSA/A-PBZ质量比为5:2时共混树脂(SB-2)的固化特性,利用动态DSC分析,根据Kissinger方法和Ozawa方法计算得出SB-2共混树脂固化反应的表观活化能分别为108.4 kJ/mol、111.1 kJ/mol,反应级数分别为0.93和0.95,固化反应遵循一级反应机理。同时还对SB共混树脂体系的耐热性能进行了探究,热重分析(TGA)结果表明:在氮气和空气氛围下,SB共混树脂固化物失重5%的温度(Td5)和1 000℃时的质量保留率均随着A-PBZ树脂加入量的增加而减小,但SB共混树脂仍然表现出优异的耐热性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号