首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
通过一系列实验,对K2O-MgO-SiO2-B2O3-F系统玻璃的分相行为进行了研究,考察了不同组份及热处理对分相行为及玻璃微观结构的影响。结果表明,适当含量的Al2O3,P2O5,CaO的引入,有助于获得理想的分相结构,对最终产品的性能将起到重要作用。  相似文献   

2.
通过体外Tris-buffer模拟生理溶液浸泡实验和动物体内的种植实验,对K2O-MgO-SiO2-B2O3-F系统玻璃的力学疲劳特性和生物学特性进行了研究,结果表明该玻璃不仅具有良好的抗疲劳特性,而且具有良好的生物相容性和生物活性,能 组织产生化学键,形成骨性结合,是一种很有应用前景的体内种植材料。  相似文献   

3.
通过体外Tris-buffer模拟生理溶液浸泡实验和动物体内的种植实验,对K_2O-MgO-SiO_2-B_2O_3-F系统玻璃的力学疲劳特性和生物学特性进行了研究,结果表明该玻璃不仅具有良好的抗疲劳特性,而且具有良好的生物相容性和生物活性,能与骨组织产生化学键,形成骨性结合,是一种很有应用前景的体内种植材料。  相似文献   

4.
利用X射线光电子能谱和核磁共振研究了BaO-SiO2-B2O3-Ti2系统玻璃。结果表明该系统玻璃中Ti^4+的配位数以「TiO4」为主。根据其Ti2p电子结合能值的变化可认为:随TiO2含量的增国,「TIo4」有向「TiO6」转变的趋势。这种转变发生在TiO2摩尔分数约为20%处。  相似文献   

5.
烧结法制备Li2O—Al2O3—SiO2系统低膨胀微晶玻璃   总被引:5,自引:0,他引:5  
本文研究了以Li2O-Al2O3-SiO2系统玻璃为基础,添加Li2O/Al2O3=1:1混合物,用烧结法制备膨胀微晶玻璃。通过DTA.X-射线衍射等鉴定了各样品中析出的主晶相,对各种样品的热膨胀系数亦作了测定。对烧结过程中固相反应的机理,化学组合与晶相组成对热膨胀性能的影响也作了探讨。  相似文献   

6.
系统研究了含有一价碱金属卤化物的Ga2S3-GeS2-KCl系统玻璃的制备与形式区,某些典型玻璃的光学和物理化学性质。  相似文献   

7.
本文利用高分辨 TEM,采用粉末样品对以溶胶法制得的钠—钙—硅掺 P_2O_5系统玻璃的分相动力学进行了研究。从理论上建立了分相颗粒的生长公式,并讨论了 P_2O_5对系统的影响。  相似文献   

8.
本实验以ZnO、SiO2、B2O3为主要原料,采用高温熔融法制备了ZnO-B2O3-SiO2体系玻璃,对该体系玻璃的成玻范围、熔制条件等进行了试验研究,并利用XRD和傅里叶红外光谱(FTIR)对材料的结构进行了分析.  相似文献   

9.
运用差热分析、x射线衍射分析、扫描电镜及透射电镜观察、红外光谱测试及拉曼散射光谱等多种方法,对添加Cr2O3的PbO—ZnO—B2O3—SiO2系统微晶玻璃进行了研究,得出了Cr2O3做为典型的晶核剂,用来诱导和控制晶化过程是最佳选择的结论,探讨了基础玻璃配方、Cr2O3的加入量及热处理制度的确定等问题。  相似文献   

10.
SiO2-Al2O3-ZnO-SrO-La2O3为基本成分制备了微晶玻璃样品,在750℃下不同时间热处理。用微波微扰法测量其微波介电性能,结合扫描电镜和X射线衍射分析了其晶相。结果表明,随保温时间的延长,样品的主晶相经历了SrZrSi2O7→SrAl2Si2O8→新玻璃相La2ZrTiO7的变化。SrAl2Si2O8相是亚稳过渡相。反应生成的新玻璃相La2ZrTiO7的Q值高达1800,温度系数约为+500×10^-6/℃。  相似文献   

11.
玻璃陶瓷是固化处理中、高放废物和α废物较为理想的候选材料之一。研究了特定条件下制备的CaO-ZrO2-TiO2-Al2O3-B2O3-SiO2体系玻璃陶瓷在水淬和空气中自然冷却的两种冷却制度对其结晶行为和显微结构的影响,用粉末浸泡实验方法测试了其化学稳定性。结果表明:自然冷却形成的玻璃陶瓷晶相主要是ZrSiO4和ZrTiO4;在25~70℃范围内,温度对玻璃陶瓷浸出率无明显影响,90℃下浸出率比25℃,40℃,70℃的浸出率高一个数量级;7 d元素总的归一化浸出为1.87 g/m2。  相似文献   

12.
A novel type of ZnO-Al2O3-B2O3-SiO2 glass-ceramics sealing to Kovar in electronic packaging was developed, whose thermal expansion coefficient and electrical resistance are 5.2×10-6/℃ and over 1×1013 Ω·cm, respectively. The major crystalline phases in the glass-ceramic seals were ZnAl2O4, ZnB2O4, and NaSiAl2O4. The dielectric resistance of the glass-ceramic could be remarkably enhanced through the control of alkali metal ions into crystal lattices. It was found that crystallization happened first on the surface of the sample, leaving the amorphous phase in the inner, which made the glass suitable for sealing. The glass-ceramic showed better wetting on the Kovar surface, and sealing atmosphere and temperature had great effect on the wetting angle. Strong interracial bonding was obtained, which was mainly attributed to the interracial reaction between SiO2 and FeO or Fe3O4.  相似文献   

13.
在酸碱滴定的双指示剂法示例中,用K2Cr2O7+K2CrO4取代Na2CO3+NaHCO3,并改用溴甲酚绿和酚酞作指示剂.其结果表明,本法滴定的终点前颜色变化较明显,终点较敏锐,准确度较好.  相似文献   

14.
以偏钛酸为钛源,与无水碳酸钾混合,利用高温固相法成功制备了六钛酸钾(K2Ti6O13)纳米晶须,并通过不同的水热反应条件考察了K2Ti6O13晶须相转变过程.利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)等测试手段表征了K2Ti6O13水热反应过程中的物相转变与形貌变化.结果表明:在不同酸介质水热反应条件下,K2Ti6O13发生相转变,并可控得到锐钛矿相TiO2纳米颗粒、纳米棒及纺锤体金红石TiO2,这种相转变过程可归结为K2Ti6O13风洞结构的溶解-重组机制;在浓NaOH作用下,K2Ti6O13通过剥离与重组作用,向Na2Ti3O7相转变.此外,考察了酸介质水热产物的催化性能,可见光条件下,1mol/LHCl、130℃保温12h得到锐钛矿纳米TiO2颗粒具有优异的光催化性能.  相似文献   

15.
基于变插入层介电常数的多层绝缘结构能改善电场分布、提高真空沿面闪络特性.通过真空热压烧结制备了TiO2/Al2O3-Al2O3-TiO2/Al2O3(A-B-A)3层绝缘结构,A层w(TiO2)为0.5%到20%.测量了该绝缘结构的真空沿面闪络特性,发现闪络特性随w(TiO2)的增加而提高,当w(TiO2)为20%时,其脉冲初次闪络电压较同等厚度的Al2O3陶瓷提高了63%.研究发现:A层的介电常数可由w(TiO2)调控,介电常数的增大能有效降低真空-绝缘子-阴极三结合点处的电场强度;A层表面存在的TiO2颗粒可以减小二次电子发射系数并改善表面电荷分布;TiO2的电导率虽比Al2O3高,但其仍为绝缘体,即使TiO2含量较高时也不会形成贯穿的导电通道.  相似文献   

16.
表面功能性材料广泛应用于金属防腐、油水分离、自清洁、防覆冰、除雾等领域。通过加成方法合成了TiO_2-F/SiO_2/F-PEG材料,具有超亲水-疏油性能、良好的耐温性和耐酸碱性,并采用接触角测量仪(CA)、场发射扫描电子显微镜(FE-SEM)、傅里叶变换红外光谱(FT-IR)、热重分析(TGA)和X射线电子能谱分析(XPS)对涂层材料的表面物理化学性质进行表征。研究结果表明:TiO_2-F/SiO_2/F-PEG,在空气中具有超亲水性(θwater≈0°),在空气或水中具有超疏油性(θoil,in air≈146°,θoil,under water≈164°),具有良好的亲水疏油性能;在室温和重力驱动下,油水分离效率达到99%,涂层经过20次循环使用,油水分离效率不低于98%。  相似文献   

17.
采用溶胶-凝胶表面包覆法制备了纳米Fe2O3-Al2 O3复合材料, 利用X射线衍射和透射电镜对样品的物相、 粒度和形貌进行了研 究. 结果表明, α-Fe2O3掺杂降低了Al2O3相变温度, 在900 ℃可以得到稳定的α-Al2O3相.  相似文献   

18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号