首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclic electron flow around photosystem I is essential for photosynthesis   总被引:4,自引:0,他引:4  
Photosynthesis provides at least two routes through which light energy can be used to generate a proton gradient across the thylakoid membrane of chloroplasts, which is subsequently used to synthesize ATP. In the first route, electrons released from water in photosystem II (PSII) are eventually transferred to NADP+ by way of photosystem I (PSI). This linear electron flow is driven by two photochemical reactions that function in series. The cytochrome b6f complex mediates electron transport between the two photosystems and generates the proton gradient (DeltapH). In the second route, driven solely by PSI, electrons can be recycled from either reduced ferredoxin or NADPH to plastoquinone, and subsequently to the cytochrome b6f complex. Such cyclic flow generates DeltapH and thus ATP without the accumulation of reduced species. Whereas linear flow from water to NADP+ is commonly used to explain the function of the light-dependent reactions of photosynthesis, the role of cyclic flow is less clear. In higher plants cyclic flow consists of two partially redundant pathways. Here we have constructed mutants in Arabidopsis thaliana in which both PSI cyclic pathways are impaired, and present evidence that cyclic flow is essential for efficient photosynthesis.  相似文献   

2.
Peers G  Price NM 《Nature》2006,441(7091):341-344
The supply of some essential metals to pelagic ecosystems is less than the demand, so many phytoplankton have slow rates of photosynthetic production and restricted growth. The types and amounts of metals required by phytoplankton depends on their evolutionary history and on their adaptations to metal availability, which varies widely among ocean habitats. Diatoms, for example, need considerably less iron (Fe) to grow than chlorophyll-b-containing taxa, and the oceanic species demand roughly one-tenth the amount of coastal strains. Like Fe, copper (Cu) is scarce in the open sea, but notably higher concentrations of it are required for the growth of oceanic than of coastal isolates. Here we report that the greater Cu requirement in an oceanic diatom, Thalassiosira oceanica, is entirely due to a single Cu-containing protein, plastocyanin, which--until now--was only known to exist in organisms with chlorophyll b and cyanobacteria. Algae containing chlorophyll c, including the closely related coastal species T. weissflogii, are thought to lack plastocyanin and contain a functionally equivalent Fe-containing homologue, cytochrome c6 (ref. 9). Copper deficiency in T. oceanica inhibits electron transport regardless of Fe status, implying a constitutive role for plastocyanin in the light reactions of photosynthesis in this species. The results suggest that selection pressure imposed by Fe limitation has resulted in the use of a Cu protein for photosynthesis in an oceanic diatom. This biochemical switch reduces the need for Fe and increases the requirement for Cu, which is relatively more abundant in the open sea.  相似文献   

3.
P Jordan  P Fromme  H T Witt  O Klukas  W Saenger  N Krauss 《Nature》2001,411(6840):909-917
Life on Earth depends on photosynthesis, the conversion of light energy from the Sun to chemical energy. In plants, green algae and cyanobacteria, this process is driven by the cooperation of two large protein-cofactor complexes, photosystems I and II, which are located in the thylakoid photosynthetic membranes. The crystal structure of photosystem I from the thermophilic cyanobacterium Synechococcus elongatus described here provides a picture at atomic detail of 12 protein subunits and 127 cofactors comprising 96 chlorophylls, 2 phylloquinones, 3 Fe4S4 clusters, 22 carotenoids, 4 lipids, a putative Ca2+ ion and 201 water molecules. The structural information on the proteins and cofactors and their interactions provides a basis for understanding how the high efficiency of photosystem I in light capturing and electron transfer is achieved.  相似文献   

4.
Loll B  Kern J  Saenger W  Zouni A  Biesiadka J 《Nature》2005,438(7070):1040-1044
Oxygenic photosynthesis in plants, algae and cyanobacteria is initiated at photosystem II, a homodimeric multisubunit protein-cofactor complex embedded in the thylakoid membrane. Photosystem II captures sunlight and powers the unique photo-induced oxidation of water to atmospheric oxygen. Crystallographic investigations of cyanobacterial photosystem II have provided several medium-resolution structures (3.8 to 3.2 A) that explain the general arrangement of the protein matrix and cofactors, but do not give a full picture of the complex. Here we describe the most complete cyanobacterial photosystem II structure obtained so far, showing locations of and interactions between 20 protein subunits and 77 cofactors per monomer. Assignment of 11 beta-carotenes yields insights into electron and energy transfer and photo-protection mechanisms in the reaction centre and antenna subunits. The high number of 14 integrally bound lipids reflects the structural and functional importance of these molecules for flexibility within and assembly of photosystem II. A lipophilic pathway is proposed for the diffusion of secondary plastoquinone that transfers redox equivalents from photosystem II to the photosynthetic chain. The structure provides information about the Mn4Ca cluster, where oxidation of water takes place. Our study uncovers near-atomic details necessary to understand the processes that convert light to chemical energy.  相似文献   

5.
A T-DNA insertion mutant AtctpA1 was identified to study the physiological roles of a carboxyl-terminal processing protease (CtpA) homologue in Arabidopsis. Under normal growth conditions, disruption of AtctpA1 did not result in any apparent alterations in growth rate and thylakoid membrane protein components. However the mutant plants exhibited increased sensitivity to high irradiance. Degradation of PSII reaction center protein D1 was accelerated in the mutant during photoinhibition. These results demostrated that AtctpA1 was required for efficient repair of PSII in Arabidopsis under high irradiance.  相似文献   

6.
R Bechtold  C Kuehn  C Lepre  S S Isied 《Nature》1986,322(6076):286-288
Cytochrome c can be modified by [(NH3)5RuII/III-] specifically at the imidazole moiety of histidine 33, and we have recently discussed the thermodynamics and kinetics of electron transfer within this modified protein. X-ray crystal structures of the oxidized and reduced forms of tuna cytochrome c indicate that the separation between the haem group of cytochrome c and the ruthenium label is 12-16 A. Internal electron transfer from the [(NH3)5RuII-] centre to the Fe(III) haem centre occurs with a rate constant k congruent to 53 s-1 (25 degrees C) (delta H = 3.5 kcal mol-1, delta S = -39 EU), as measured by pulse radiolysis. The measured unimolecular rate constant, k congruent to 53 s-1, is on the same timescale as a number of conformational changes that occur within the cytochrome c molecule. These results raise the question of whether electron transfer or protein conformational change is the rate limiting step in this process. We describe here an experiment that probes this intramolecular electron transfer step further. It involves reversing the direction of electron transfer by changing the redox potential of the ruthenium label. Electron transfer in the new ruthenium-cytochrome c derivative described here is from haem(II) to the Ru(III) label, whereas in (NH3)5Ru-cytochrome c the electron transfer is from Ru(II) to haem(III). Intramolecular electron transfer from haem(II) to Ru(III) in the new ruthenium-cytochrome c described here proceeds much slower (greater than 10(5) times) than the electron transfer from Ru(II) to haem(III) in the (NH3)5Ru-cytochrome c. We therefore conclude that electron transfer in cytochrome c is directional, with the protein envelope presumably involved in this directionality.  相似文献   

7.
8.
Illumination changes elicit modifications of thylakoid proteins and reorganization of the photosynthetic machinery. This involves, in the short term, phosphorylation of photosystem II (PSII) and light-harvesting (LHCII) proteins. PSII phosphorylation is thought to be relevant for PSII turnover, whereas LHCII phosphorylation is associated with the relocation of LHCII and the redistribution of excitation energy (state transitions) between photosystems. In the long term, imbalances in energy distribution between photosystems are counteracted by adjusting photosystem stoichiometry. In the green alga Chlamydomonas and the plant Arabidopsis, state transitions require the orthologous protein kinases STT7 and STN7, respectively. Here we show that in Arabidopsis a second protein kinase, STN8, is required for the quantitative phosphorylation of PSII core proteins. However, PSII activity under high-intensity light is affected only slightly in stn8 mutants, and D1 turnover is indistinguishable from the wild type, implying that reversible protein phosphorylation is not essential for PSII repair. Acclimation to changes in light quality is defective in stn7 but not in stn8 mutants, indicating that short-term and long-term photosynthetic adaptations are coupled. Therefore the phosphorylation of LHCII, or of an unknown substrate of STN7, is also crucial for the control of photosynthetic gene expression.  相似文献   

9.
G J Pielak  A G Mauk  M Smith 《Nature》1985,313(5998):152-154
Phenylalanine 87 of yeast iso-1-cytochrome c (Phe 82 in horse heart and bonito) is phylogenetically conserved and occurs near the surface of the protein. It has been suggested that this residue is directly involved in electron transfer between cytochrome c and cytochrome c peroxidase (CCP) and may also control the polarity of the haem environment. Because Phe residues are not susceptible to chemical modification, no direct means of studying the functional role of Phe 87 has been available, so we have chosen Phe 87 as our initial target here to test the feasibility of using site-directed mutagenesis as a means of studying structure-function relationships in cytochrome c. We have changed the codon for Phe 87 to that of either a Ser, a Tyr or a Gly. The mutated genes have been introduced into a yeast strain lacking both isozymes of cytochrome c. Unlike the recipient strain, transformants grow on a non-fermentable carbon source, indicating that the mutant proteins can reduce cytochrome oxidase. The purified mutant proteins are similar to wild type with respect to their visible spectra, 20-70% as active as wild-type protein in the CCP assay, and their reduction potentials are lowered by as much as 50 mV. Thus Phe 87 is not essential for cytochrome c to transfer electrons but is involved in determining the reduction potential.  相似文献   

10.
Osyczka A  Moser CC  Daldal F  Dutton PL 《Nature》2004,427(6975):607-612
Reversibility is a common theme in respiratory and photosynthetic systems that couple electron transfer with a transmembrane proton gradient driving ATP production. This includes the intensely studied cytochrome bc1, which catalyses electron transfer between quinone and cytochrome c. To understand how efficient reversible energy coupling works, here we have progressively inactivated individual cofactors comprising cytochrome bc1. We have resolved millisecond reversibility in all electron-tunnelling steps and coupled proton exchanges, including charge-separating hydroquinone-quinone catalysis at the Q(o) site, which shows that redox equilibria are relevant on a catalytic timescale. Such rapid reversibility renders popular models based on a semiquinone in Q(o) site catalysis prone to short-circuit failure. Two mechanisms allow reversible function and safely relegate short-circuits to long-distance electron tunnelling on a timescale of seconds: conformational gating of semiquinone for both forward and reverse electron transfer, or concerted two-electron quinone redox chemistry that avoids the semiquinone intermediate altogether.  相似文献   

11.
MinD is a ubiquitous ATPase that plays a crucial role in selection of the division site in eubacteria, chloroplasts, and probably Archaea. In four green algae, Mesostigma viride, Nephroselmis olivacea, Chlorella vulgaris and Prototheca wickerhamii, MinD homologues are encoded in the plastid genome. However, in Arabidopsis, MinD is a nucleus-encoded, chloroplast-targeted protein involved in chloro- plast division, which suggests that MinD has been transferred to the nucleus in higher land plants. Yet the lateral gene transfer (LGT) of MinD from plastid to nucleus during plastid evolution remains poorly understood. Here, we identified a nucleus-encoded MinD homologue from unicellular green alga Chlamydomonas reinhardtii, a basal species in the green plant lineage. Overexpression of CrMinD in wild type E. coli inhibited cell division and resulted in the filamentous cell formation, clearly demon- strated the conservation of the MinD protein during the evolution of photosynthetic eukaryotes. The transient expression of CrMinD-egfp confirmed the role of CrMinD protein in the regulation of plastid division. Searching all the published plastid genomic sequences of land plants, no MinD homologues were found, which suggests that the transfer of MinD from plastid to nucleus might have occurred be- fore the evolution of land plants.  相似文献   

12.
离子的跨膜转运是细胞获取养分的重要环节,亦是植物在组织和器官水平上进行养分吸收运移的基础.在植物中镍(Ni)元素主要以Ni^2+的形式存在,并通过Ni^2+转运蛋白将其跨膜转运至相应的组织器官,参与氢酶和脲酶的合成.生物信息学分析表明,拟南芥中一个Ni^2+转运蛋白AT2G16800含有叶绿体定位信息.克隆该基因5’端编码转运肽的272bp片段,与绿色荧光蛋白(GFP)基因融合后,在拟南芥中高效表达,对其进行了亚细胞定位的研究.转基因植株通过共聚焦扫描显微镜的观察,发现GFP荧光信号只存在于叶绿体中,该结果表明A他G16800为叶绿体蛋白.  相似文献   

13.
All organisms with oxygenic photosynthesis contain two photosystems:photosystem Ⅰ(PSⅠ)and photo-systemⅡ(PSⅡ),The minimal photosystem Ⅱ particles which are photochemically active contain three subunits:D1,D2 and cytochrome b559 (Cyt b559),The function of Cyt b559 remains unclear,We have successfully overxpressed the psbF gene,encoding the β subunit of Cyt b559,from a marine cyanobacterium Synechoccous sp.PCC 7002 as a fusion gene and obtained a redox-active from of Cyt b559,When the N-terminal GST protein of the fusion gene product was removed with thrombin ,the PsbF protein was still redox-active,suggesting that the recombinant PsbF can form dimer in Escherichia coli.The absorption spectra of either the oxidized from or the reduced form of both GST fusion protein and the purified PsbF dimer and the difference Spectra between the two forms are the same as that of the Cyt b559 isolated from the higher plants .Redox titration analysis of recombinant PsbF showed that the mid-point redox potential of the recombinant Cyt b559 was approximately 50 mV, which is close to the low potential of Cyt b559 ,The results are helpful to the understanding of locatlization and function of Cyt b559 on thylakoid membranes.Ⅰ  相似文献   

14.
Kinetic studies of the heme dissociation from the wild type and Phe35Tyr, Phe35Leu mutants of bovine liver microsomal ferricytochrome b 5 indicate that the oxidized Phe35Tyr mutant is more stable towards denaturant than wild type but Phe35Leu mutant proceeded with a different mechanism compared with wild type cytochrome b 5 and Phe35Tyr mutant protein. Because of the decrease of side chain volume in Phe35Leu mutant, a cavity produced in the interior of the protein may offer a channel for urea molecule to enter the hydrophobic pocket. When urea concentration is larger than 5 mol/L, the urea molecule may compete to coordinate the iron of heme with His39, that results in sharp increase of the rate of heme dissociation. The interaction between cytochrome b 5 and cytochrom c demonstrated that a 1:1 protein complex was formed between the two proteins. The binding constants of cytochrome b 5 with cytochrome c are: wild type K A=4.2(±0.01)×10 6(mol/L) -1 , Phe35Tyr K A=3.7(±0.01)×10 6(mol/L) -1 and Phe35Leu K A=4.7(±0.01)×10 6(mol/L) -1 respectively ( I =1 m mol/L, pH 7.0 soldium phosphate buffer, 25℃). These results clearly show that the mutation at Phe35 has no influence on the binding of cytochrome b 5 with cytochrome c and that the hydrophilic patch residues are not involved in the binding of cytochrome b 5 and cytochrome c.  相似文献   

15.
An apoptotic cell-free system containing cytosol and nuclei from normally cultured tobacco suspension cells was used to show that a spinach chloroplast preparation can induce apoptosis in nuclei, evidenced by DNA electrophoresis and fluorescence microscopy observations, Further study showed that the chloroplast preparation or its pellet (thylakoid membrane) after hypoosmotic or supersonic treatment still exhibited the apoptosis-inducing activity, but the supernatant had no effect, which indicates that the apoptosisinducing effector in the chloroplast preparation is water-insoluble. The induction of apoptosis by chloroplast preparation could be attenuated by Ac-DEVD-CHO, the specific inhibitor of Caspase-3, implying involvement of a Caspase-3-1ike protease during the process. Furthermore, extensive apoptosis in nuclei was induced by cytochrome b6/f on the thylakoid membrane, indicating that this important cytochrome complex may have an important role in the chloroplast-related apoptotic pathway.  相似文献   

16.
随着环境中铯(Cs)污染日益恶化,铯对生物毒害作用的研究受到越来越多的关注.为了探讨铯对植物光合作用的影响,在石英砂和Hoagland营养液培养体系下,从三叶期开始用浓度为0、0.5、1、5、10、20 mmol·L-1的133Cs+[CsCl]处理小麦(Triticum aestivum L.)幼苗.在处理后的第0、7、14、21、28 d时,检测小麦光合特性的改变.结果表明:用0.5 mmol·L-1和1 mmol·L-1低浓度133Cs+处理7 d后,小麦叶片的叶绿素含量、叶圆片放氧活性、类囊体膜电子传递活性均显著高于对照;但随133Cs+浓度的增加及处理时间的延长,这些参数的数值均显著下降.此外,光合系统II(PSII)活性的下降速率高于光合系统I(PSI)下降速率,说明PSII相对于PSI更容易受到133Cs+的胁迫伤害.这些结果表明133Cs+对小麦的毒害效应受时间和浓度的双重制约.低浓度133Cs+可以促进小麦光合作用,而高浓度133Cs+则显著抑制小麦光合作用.  相似文献   

17.
Belevich I  Verkhovsky MI  Wikström M 《Nature》2006,440(7085):829-832
Electron transfer in cell respiration is coupled to proton translocation across mitochondrial and bacterial membranes, which is a primary event of biological energy transduction. The resulting electrochemical proton gradient is used to power energy-requiring reactions, such as ATP synthesis. Cytochrome c oxidase is a key component of the respiratory chain, which harnesses dioxygen as a sink for electrons and links O2 reduction to proton pumping. Electrons from cytochrome c are transferred sequentially to the O2 reduction site of cytochrome c oxidase via two other metal centres, Cu(A) and haem a, and this is coupled to vectorial proton transfer across the membrane by a hitherto unknown mechanism. On the basis of the kinetics of proton uptake and release on the two aqueous sides of the membrane, it was recently suggested that proton pumping by cytochrome c oxidase is not mechanistically coupled to internal electron transfer. Here we have monitored translocation of electrical charge equivalents as well as electron transfer within cytochrome c oxidase in real time. The results show that electron transfer from haem a to the O2 reduction site initiates the proton pump mechanism by being kinetically linked to an internal vectorial proton transfer. This reaction drives the proton pump and occurs before relaxation steps in which protons are taken up from the aqueous space on one side of the membrane and released on the other.  相似文献   

18.
The binding and electron transfer between wild type, E44A, E56A, E44/56A, E44/48/56A/D60A and F35Y variants of cytochrome b5 and cytochrome c were studied. When mixed with cytochrome c, the cytochrome b, E44/48/56A/D60A did not show the typical UV-vis difference spectrum of absorption, indicating that the alteration of the surface electrostatic potential obviously influenced the spectrum. The electron transfer rates of wild type cytochrome bj, its variants and cytochrome c at different temperature and ionic strength exhibited an order of F35Y > wild type > E56A > E44A > E44/48/56A/D60A. The enthalpy and entropy of the reaction did not change obviously, suggesting that the mutation did not significantly disturb the electron transfer conformation. The investigation of electron transfer rate constants at different ionic strength demonstrated that electrostatic interaction obviously affected the electron transfer process. The significant difference of Cyt b, F35Y and E44/48/56A/D60A from the wild type protein further confirmed the great importance of the electrostatic interaction in the protein electron transfer.  相似文献   

19.
Cytochrome c oxidase is a member of the haem copper oxidase superfamily (HCO). HCOs function as the terminal enzymes in the respiratory chain of mitochondria and aerobic prokaryotes, coupling molecular oxygen reduction to transmembrane proton pumping. Integral to the enzyme's function is the transfer of electrons from cytochrome c to the oxidase via a transient association of the two proteins. Electron entry and exit are proposed to occur from the same site on cytochrome c. Here we report the crystal structure of the caa3-type cytochrome oxidase from Thermus thermophilus, which has a covalently tethered cytochrome c domain. Crystals were grown in a bicontinuous mesophase using a synthetic short-chain monoacylglycerol as the hosting lipid. From the electron density map, at 2.36?? resolution, a novel integral membrane subunit and a native glycoglycerophospholipid embedded in the complex were identified. Contrary to previous electron transfer mechanisms observed for soluble cytochrome c, the structure reveals the architecture of the electron transfer complex for the fused cupredoxin/cytochrome c domain, which implicates different sites on cytochrome c for electron entry and exit. Support for an alternative to the classical proton gate characteristic of this HCO class is presented.  相似文献   

20.
In cyanobacteria and higher plants, NdhS is suggested to be an electron donor-binding subunit of NADPH dehydrogenase (NDH-1) complexes and its absence impairs NDH-l-dependent cyclic electron trans- port around photosystem I (NDH-CET). Despite significant advances in the study of NdhS during recent years, its functional role in resisting heat stress is poorly understood. Here, our results revealed that the absence of NdhS resulted in a serious heat-sensitive growth phenotype in the uni- cellular cyanobacterium Synechocystis sp. strain PCC 6803. Furthermore, the rapid and significant increase in NDH-CET caused by heat treatment was completely abolished, and the repair of photosystem II under heat stress conditions was greatly impaired when compared to that of other photosynthetic apparatus in the thylakoid membrane. We therefore conclude that NdhS plays an important role in resistance to heat stress, possibly by stabilizing the electron input module of cyanobacterial NDH-1 complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号