首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
提出解双抛物型方程的高精度隐式无条件稳定差分格式,其局部截断误差为O(τ2+h4).双抛物型方程分解为两个二阶抛物型方程,其一为非齐次,另一为齐次,每一个均用局部截断误差为O(τ2+h4)的稳定差分格式来解.  相似文献   

2.
高阶抛物型方程恒稳的显式差分格式   总被引:1,自引:1,他引:1  
提出解离阶抛物型方程au/at=(1)^m+1a^2mu/ax^2m的一类恒稳定的三层显式差分格式,大大地改进了抛物型方程的网格积分法中格式的稳定性条件,数值例子表明所作的稳定性分析是正确的。  相似文献   

3.
构造和研究了五维抛物型方程的高精度显式差分格式.首先给出了含参变量的差分方程,并用待定系数法适当地选取了这些参数的表示式,以使差分方程的截断误差阶尽可能高地达到了O(Δt2+Δx4);其次用稳定性分析的Fourier方法给出了所得格式的稳定性条件;接着确定了高精度显式差分格式的稳定性条件为r<2/5;最后给出了数值例子,数值结果表明了本文格式较现有同类格式的优越性和理论分析的正确性.  相似文献   

4.
提出了数值求解二维扩散方程的一种半显式高精度差分格式,其截断误差为D(τ+h2),并且是无条件稳定的.数值算例验证了方法的精确性和可靠性.  相似文献   

5.
对四阶抛物型方程 u t 2 u x4=0构造出一族截断误差阶为 O((Δt) 2 (Δx) 6)的三层隐式差分格式 .证明它是绝对稳定的 ,且可用追赶法求解 .数值例子表明 ,文中所提出的格式是有效的 ,理论分析与实际计算相吻合 .  相似文献   

6.
解三维抛物型方程的高精度显式格式   总被引:5,自引:0,他引:5  
提出解三维抛物型方程的两层以及三层的高精度显式差分格式。它们的局部截断误差都是O(Δ(t^2)而稳定性条件分别为r=1/6和r<1/6。  相似文献   

7.
解四阶抛物型方程的高精度显式差分格式   总被引:5,自引:1,他引:5  
提出解四阶抛物型方程u1+uxxxx=0的一个三层显式差分格式,其稳定性条件和局部截断误差分别为r=Δt/Δx^4〈1/8和O。  相似文献   

8.
三维热传导方程恒稳定的高精度半显式差分方法   总被引:2,自引:2,他引:0  
提出了数值求解三维热传导方程的一种无条件稳定的高精度半显式差分方法,该方法可以显式计算且计算量小,截断误差为O(τ2+h4).数值算例验证了方法的精确性和可靠性.  相似文献   

9.
对四阶抛物型方程ut+uxxxx=0,构造一个新的三层显式差分格式,其稳定性条件和局部截断误差阶分别为r=τ/h4≤1/8和O(2τ+h6),其结果优于其他四阶抛物型方程的结果.数值例子表明,理论分析是正确的,该格式是有效的.  相似文献   

10.
本文构造了一个解三维抛物型方程的高精度显格式,截断误差为O(Δt2+Δx4),稳定性条件为r=Δt/Δx2=Δt/Δy2=Δt/Δz2≤1/6,格式表达式简单,应用方便  相似文献   

11.
对二阶抛物型方程ut=uxx,构造了一族新的三层隐式差分格式(在特殊情况下是两层),它们含有非负参数a1,a2和a3,其截断误差至少可达O(△t)^2+(△x)^4),对三层格式,在条件a1≥a2≥0,a2≤1/2及a1+a2+a3=1之下绝对稳定,特别地,在条件a1=0,a2=a3或a1=a2,a3=0之下成为两层不含参数的隐式格式,且也是绝对稳定的。这些格式均可用追赶法求解,在该格式中,选取适  相似文献   

12.
解四阶抛物型方程的绝对稳定高精度差分格式   总被引:16,自引:0,他引:16  
对四阶抛物理方程U1+Uxxx=0构造一族含双参数的三层差分格式,当参数a=1/2,β=0时得到双层格式,这些格式对任意非负参数均色对稳定的,共截断误差为O(Δt^2+Δx^6),且可用追赶法求解。  相似文献   

13.
14.
本文采用待定系数法导出了一类抛物型方程的高精度三层显式差分格式,它的截断误差为O(τ^2+h^4),并讨论了差分格式的稳定性条件为r∈(0,1/2].最后用数值例子验证了理论分析的正确性,这个结果优于Mann,Tim Lake稳定性条件r∈(0,1/3]的结果.  相似文献   

15.
解四阶抛物型方程高精度恒稳的隐式格式   总被引:1,自引:1,他引:1  
对四阶抛物型方程ut+uxxxx=0构造了一类三层隐式差分格式,它们含有非负参数α1,α2和α3,其局部截断误差至少是O(Δt2+Δt6).在条件α1≥α3≥0,0≤α2≤及α1+α2+α3=1之下,该格式绝对稳定且可用追赶法求解.  相似文献   

16.
解高阶抛物型方程的三层显式差分格式   总被引:1,自引:0,他引:1  
对高阶抛物型方程提出一个三层显式差分格式,其局部截断误差阶是O(τ2+h4).证明当m为1,2,3时,其稳定性条件为r=τ/h2m<1/22m-1.数值例子表明所提的格式是有效的,理论分析是正确的.  相似文献   

17.
利用二阶徽商的四阶精度紧致差分逼近公式,给出解抛物型方程精度为O[1-20)t,t2+x4]的一种新的加权差分格式,并通过Fourier方法讨论格式的稳定性.证明了当1/2≤θ≤1时,格式是无条件稳定的;当0≤θ<1/2时,只有r≤1/3(1-2θ),格式才是稳定的,其中θ是加权参数(因子),t,x分别为时空方向的网格长度,r=(D是二阶导数项系数).  相似文献   

18.
文献[1]构造了一类对任意维抛物型方程都适用的绝对稳定的显式差分格式,但精度不高,截断误差阶仅为O(Δt2+Δx2),文献[2]构造了一族解四维抛物型方程的高精度显式差分格式,截断误差阶达O(Δt2+Δx4),但稳定性条件r<1/6又较为苛刻.我们对四维抛物型方程的初边值问题(区域和定解条件略) u t=a( 2u x2+ 2u y2+ 2u z2+ 2u w2),a>0使用待定参数法,构造了一个高精度的显式差分格式格式当1/8=r=aΔt/Δx2<1/2时稳定且收敛,截断误差阶为O(Δt2+Δx4).联合使用格式(1)、(2)则对任r<1/2就构成了一个稳定且收敛的截断误差阶为O(Δt2+Δx4)的显式差分…  相似文献   

19.
利用加权平均思想和二阶微商的四阶紧致差分逼近公式,构造了一种求解一维抛物型方程的高精度半显式差分格式,其截断误差为O(τ2 h4).通过Fourier分析方法证明了该格式是无条件稳定的.通过数值算例验证了本文方法的精确性和可靠性.  相似文献   

20.
用待定系数法构造了求解二维抛物型方程的高精度分支稳定的显式差分格式,格式的截断误差达到O(Δt2+Δx4).证明了当1/12≤r≤1/6时,差分格式是稳定的.通过数值试验比较了差分格式的解和精确解,说明了差分格式的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号