首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Controlling iron/oxygen chemistry in biology depends on multiple genes, regulatory messenger RNA (mRNA) structures, signaling pathways and protein catalysts. Ferritin, a protein nanocage around an iron/oxy mineral, centralizes the control. Complementary DNA (antioxidant responsive element/Maf recognition element) and mRNA (iron responsive element) responses regulate ferritin synthesis rates. Multiple iron-protein interactions control iron and oxygen substrate movement through the protein cage, from dynamic gated pores to catalytic sites related to di-iron oxygenase cofactor sites. Maxi-ferritins concentrate iron for the bio-synthesis of iron/heme proteins, trapping oxygen; bacterial mini-ferritins, DNA protection during starvation proteins, reverse the substrate roles, destroying oxidants, trapping iron and protecting DNA. Ferritin is nature’s unique and conserved approach to controlled, safe use of iron and oxygen, with protein synthesis in animals adjusted by dual, genetic DNA and mRNA sequences that selectively respond to iron or oxidant signals and link ferritin to proteins of iron, oxygen and antioxidant metabolism. Received 25 June 2005; received after revision 17 October 2005; accepted 25 November 2005  相似文献   

2.
3.
4.
Mutations of cystic fibrosis transmembrane conductance regulator (CFTR) cause cystic fibrosis, the most common life-limiting recessive genetic disease among Caucasians. CFTR mutations have also been linked to increased risk of various cancers but remained controversial for a long time. Recent studies have begun to reveal that CFTR is not merely an ion channel but also an important regulator of cancer development and progression with multiple signaling pathways identified. In this review, we will first present clinical findings showing the correlation of genetic mutations or aberrant expression of CFTR with cancer incidence in multiple cancers. We will then focus on the roles of CFTR in fundamental cellular processes including transformation, survival, proliferation, migration, invasion and epithelial–mesenchymal transition in cancer cells, highlighting the signaling pathways involved. Finally, the association of CFTR expression levels with patient prognosis, and the potential of CFTR as a cancer prognosis indicator in human malignancies will be discussed.  相似文献   

5.
Curcumin, a natural polyphenol, has been described to exhibit effects on signaling pathways, leading to induction of apoptosis. In this study, we observed that curcumin inhibited Hsp90 activity causing depletion of client proteins implicated in survival pathways. Based on this observation, this study was designed to investigate the cellular effects of curcumin combination with the pan-HDAC inhibitors, vorinostat and panobinostat, which induce hyperacetylation of Hsp90, resulting in inhibition of its chaperone function. The results showed that, at subtoxic concentrations, curcumin markedly sensitized tumor cells to vorinostat- and panobinostat-induced growth inhibition and apoptosis. The sensitization was associated with persistent depletion of Hsp90 client proteins (EGFR, Raf-1, Akt, and survivin). In conclusion, our findings document a novel mechanism of action of curcumin and support the therapeutic potential of curcumin/HDAC inhibitors combination, because the synergistic interaction was observed at pharmacologically achievable concentrations, which were ineffective when each drug was used alone.  相似文献   

6.
Considering the high mortality rate encountered in lung cancer, there is a strong need to explore new biomarkers for early diagnosis and also improved therapeutic targets to overcome this issue. The implementation of microRNAs as important regulators in cancer and other pathologies expanded the possibilities of lung cancer management and not only. MiR-21 represents an intensively studied microRNA in many types of cancer, including non-small cell lung cancer (NSCLC). Its role as an oncogene is underlined in multiple studies reporting the upregulated expression of this sequence in patients diagnosed with this malignancy; moreover, several studies associated this increased expression of miR-21 with a worse outcome within NSCLC patients. The same pattern is supported by the data existent in the Cancer Genome Atlas (TCGA). The carcinogenic advantage generated by miR-21 in NSCLC resides in the target genes involved in multiple pathways such as cell growth and proliferation, angiogenesis, invasion and metastasis, but also chemo- and radioresistance. Therapeutic modulation of miR-21 by use of antisense sequences entrapped in different delivery systems has shown promising results in impairment of NSCLC. Hereby, we review the mechanisms of action of miR-21 in cancer and the associated changes upon tumor cells together a focused perspective on NSCLC signaling, prognosis and therapy.  相似文献   

7.
8.
Sirtuins comprise a unique class of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases that target multiple protein substrates to execute diverse biological functions. These enzymes are key regulators of clinically important cellular and organismal processes, including metabolism, cell division and aging. The desire to understand the important determinants of human health and lifespan has resulted in a firestorm of work on the seven mammalian sirtuins in less than a decade. The implication of sirtuins in medically important areas such as diabetes, cancer, cardiovascular dysfunction and neurodegenerative disease has further catapulted them to a prominent status as potential targets for nutritional and therapeutic development. Here, we present a review of published results on sirtuin biology and its relevance to human disease. Received 25 June 2008; received after revision 20 August 2008; accepted 29 August 2008  相似文献   

9.
Molecular basis for chemoprevention by sulforaphane: a comprehensive review   总被引:10,自引:0,他引:10  
The consumption of cruciferous vegetables has long been associated with a reduced risk in the occurrence of cancer at various sites, including the prostate, lung, breast and colon. This protective effect is attributed to isothiocyanates present in these vegetables, and sulforaphane (SF), present in broccoli, is by far the most extensively studied to uncover the mechanisms behind this chemoprotection. The major mechanism by which SF protects cells was traditionally thought to be through Nrf2-mediated induction of phase 2 detoxification enzymes that elevate cell defense against oxidative damage and promote the removal of carcinogens. However, it is becoming clear that there are multiple mechanisms activated in response to SF, including suppression of cytochrome P450 enzymes, induction of apoptotic pathways, suppression of cell cycle progression, inhibition of angiogenesis and anti-inflammatory activity. Moreover, these mechanisms seem to have some degree of interaction to synergistically afford chemoprevention. Received: 10 November 2006; received after revision 15 January 2007; accepted 5 February 2007  相似文献   

10.
Cell motility is defined as cell movement in the three-dimensional space leading to repositioning of the cell. Atypical protein kinase C (aPKC, including ζ and λ/ι) are a subfamily of PKC. Different from classic PKC and novel PKC, the activation of atypical PKC is not dependent on diacylglycerol or calcium. PKCζ can be activated by lipid components, such as phosphatidylinositols, phosphatidic acid, arachidonic acid, and ceramide. Both phosphatidylinositol (3,4,5)-trisphosphate and PDK1 are necessary for the complete and stable activation of PKCζ. Atypical PKC is involved in the regulation of cell polarization, directional sensing, formation of filopodia, and cell motility. It is essential for migration and invasion of multiple cancer cell types. Particularly, atypical PKC has been found in the regulation of the motility of hematopoietic cells. It also participates in the regulation of proteolytic activity of podosomes and invadopodia. It has been found that atypical PKC can work coordinately with other PKC subfamily members and other signaling pathways. Research on the roles of atypical PKC in cell motility may lead to new therapeutic strategies for cancer and other diseases.  相似文献   

11.
The parvins   总被引:5,自引:0,他引:5  
The parvins are a family of proteins involved in linking integrins and associated proteins with intracellular pathways that regulate actin cytoskeletal dynamics and cell survival. Both α-parvin (PARVA) and β-parvin (PARVB) localize to focal adhesions and function in cell adhesion, spreading, motility and survival through interactions with partners, such as integrin-linked kinase (ILK), paxillin, α-actinin and testicular kinase 1. A complex of PARVA with ILK and the LIM protein PINCH-1 is critical for cell survival in a variety of cells, including certain cancer cells, kidney podocytes and cardiac myocytes. While PARVA inhibits the activities of Rac1 and testicular kinase 1 and cell spreading, PARVB binds αPIX and α-actinin, and can promote cell spreading. In contrast to PARVA, PARVB inhibits ILK activity and reverses some of its oncogenic effects in cancer cells. This review focuses on the structure and function of the parvins and some possible roles in human diseases. Received 5 August 2005; received after revision 5 September 2005; accepted 22 September 2005  相似文献   

12.
CYLD is a protein with tumor suppressor properties which was originally discovered associated with cylindromatosis, an inherited cancer exclusively affecting the folicullo-sebaceous-apocrine unit of the epidermis. CYLD exhibits deubiquitinating activity and acts as a negative regulator of NF-κB and JNK signaling through its interaction with NEMO and TRAF2. Recent data suggest that this is unlikely to be its unique function in vivo. CYLD has also been shown to control other seemingly disparate cellular processes, such as proximal T cell receptor signaling, TrkA endocytosis and mitosis. In each case, this enzyme appears to act by regulating a specific type of polyubiquitination, K63 polyubiquitination, that does not result in recognition and degradation of proteins by the proteasome but instead controls their activity through diverse mechanisms. Received 6 October 2007; received after revision 2 November 2007; accepted 23 November 2007  相似文献   

13.
Mitogenic signals stimulate cell division by activating cyclin/cyclin-dependent kinase (CDK) complexes. Their timely regulation ensures proper cell cycle progression. It is therefore not surprising that cyclin/CDK complexes are integrators of multiple signals from both the extracellular environment and intracellular cues. Important regulators of cyclin/CDKs are the CDK inhibitors that have attracted attention due to their association with disease. p27KIP1 is a CDK inhibitor that controls CDK activity throughout the cell cycle. As a CDK inhibitor, p27KIP1 has tumor suppressor activity. Besides CDKs, p27KIP1 regulates additional cellular processes, including cell motility, some of which seem to mediate oncogenic activities of p27KIP1. These activities of p27KIP1 are regulated through multiple phosphorylation sites, targeted by several signal transduction pathways. Understanding functions and regulation of p27KIP1 will be important to determine which isoform of p27KIP1 has anti- or pro-tumorigenic activities. Such knowledge might be of prognostic value and may offer novel therapeutic windows. Received 26 May 2008; accepted 17 June 2008  相似文献   

14.
p75NTR, the common receptor for both neurotrophins and proneurotrophins, has been widely studied because of its role in many tissues, including the nervous system. More recently, a close relationship between p75NTR expression and pluripotency has been described. p75NTR was shown to be expressed in various types of stem cells and has been used to prospectively isolate stem cells with different degrees of potency. Here, we give an overview of the current knowledge on p75NTR in stem cells, ranging from embryonic to adult stem cells, and cancer stem cells. In an attempt to address its potential role in the control of stem cell biology, the molecular mechanisms underlying p75NTR signaling in different models are also highlighted. p75NTR-mediated functions include survival, apoptosis, migration, and differentiation, and depend on cell type, (pro)neurotrophin binding, interacting transmembrane co-receptors expression, intracellular adaptor molecule availability, and post-translational modifications, such as regulated proteolytic processing. It is therefore conceivable that p75NTR can modulate cell-fate decisions through its highly ramified signaling pathways. Thus, elucidating the potential implications of p75NTR activity as well as the underlying molecular mechanisms of p75NTR will shed new light on the biology of both normal and cancer stem cells.  相似文献   

15.
Vimentin, a major constituent of the intermediate filament family of proteins, is ubiquitously expressed in normal mesenchymal cells and is known to maintain cellular integrity and provide resistance against stress. Vimentin is overexpressed in various epithelial cancers, including prostate cancer, gastrointestinal tumors, tumors of the central nervous system, breast cancer, malignant melanoma, and lung cancer. Vimentin’s overexpression in cancer correlates well with accelerated tumor growth, invasion, and poor prognosis; however, the role of vimentin in cancer progression remains obscure. In recent years, vimentin has been recognized as a marker for epithelial–mesenchymal transition (EMT). Although EMT is associated with several tumorigenic events, vimentin’s role in the underlying events mediating these processes remains unknown. By virtue of its overexpression in cancer and its association with tumor growth and metastasis, vimentin serves as an attractive potential target for cancer therapy; however, more research would be crucial to evaluate its specific role in cancer. Our recent discovery of a vimentin-binding mini-peptide has generated further impetus for vimentin-targeted tumor-specific therapy. Furthermore, research directed toward elucidating the role of vimentin in various signaling pathways would reveal new approaches for the development of therapeutic agents. This review summarizes the expression and functions of vimentin in various types of cancer and suggests some directions toward future cancer therapy utilizing vimentin as a potential molecular target.  相似文献   

16.
目的 观察姜黄素(Curcumin)对乳腺癌细胞MCF-7增殖的影响,以及对细胞内Wnt信号通路的影响,探索Curcumin可能存在的抑制乳腺癌细胞增殖的分子机制.方法 体外培养人乳腺癌细胞MCF-7,并用不同浓度的Curcumin作用不同的时间.用MTT检测Curcumin对MCF-7细胞生长情况的影响;流式细胞仪观察经Curcumin作用后细胞周期的改变;RT-PCR和Westernblot分别检测细胞内β -catenin和下游靶基因CyclinD1的mRNA和蛋白水平的表达.结果 MTT结果显示Curcumin可以抑制MCF-7的增殖,并具有剂量-时间依赖性.在浓度为20 μmol·L-1时,对细胞生长的抑制作用最为明显.流式细胞仪观察细胞周期的结果提示,Curcumin能够阻止MCF-7细胞由G1期进入S期,提高Go/G1期细胞的百分比.RT-PCR和Western blot结果显示,Curcumin显著降低了细胞内β-catenin和CyclinD1的mRNA和蛋白水平的表达,且呈剂量-时间依赖性.结论 Curcumin能够抑制MCF-7细胞胞浆内β -catenin蛋白进入胞核,阻断Wnt信号转导通路.进而抑制下游靶基因CyclinD1的表达,阻止MCF-7由G1期进入S期,有效抑制了MCF-7细胞的增殖.  相似文献   

17.
Reversible tyrosine phosphorylation is a key posttranslational regulatory modification of proteins in all eukaryotic cells in normal and pathological processes. Recently a pivotal janus-faced biological role of the low molecular weight protein tyrosine phosphatase (LMWPTP) has become clear. On the one hand this enzyme is important in facilitating appropriate immune responses towards infectious agents, on the other hand it mediates exaggerated inflammatory responses toward innocuous stimuli. The evidence that LMWPTP plays a role in oncological processes has added a promising novel angle. In this review we shall focus on the regulation of LMWPTP enzymatic activity of signaling pathways of different immunological cells, the relation between genetic polymorphism of LMWPTP and predisposition to some type of inflammatory disorders and the contribution of this enzyme to cancer cell onset, growth and migration. Therefore, the LMWPTP is an interesting target for pharmacological intervention, thus modifying both inappropriate cellular immune responses and cancer cell aggressiveness. Received 15 August 2008; received after revision 06 October 2008; accepted 14 October 2008  相似文献   

18.
19.
Ras GTPases mediate a wide variety of cellular processes by converting a multitude of extracellular stimuli into specific biological responses including proliferation, differentiation and survival. In mammalian cells, three ras genes encode four Ras isoforms (H-Ras, K-Ras4A, K-Ras4B and N-Ras) that are highly homologous but functionally distinct. Differences between the isoforms, including their post-translational modifications and intracellular sorting, mean that Ras has emerged as an important model system of compartmentalised signalling and membrane biology. Ras isoforms in different subcellular locations are proposed to recruit distinct upstream and downstream accessory proteins and activate multiple signalling pathways. Here, we summarise data relating to isoform-specific signalling, its role in disease and the mechanisms promoting compartmentalised signalling. Further understanding of this field will reveal the role of Ras signalling in development, cellular homeostasis and cancer and may suggest new therapeutic approaches.  相似文献   

20.
Apoptosis is a fundamental process for metazoan development. It is also relevant to the pathophysiology of immune diseases and cancers and to the outcome of cancer chemotherapies, as well as being a target for cancer therapies. Apoptosis involves intrinsic pathways typically initiated by DNA damaging agents and engaging mitochondria, and extrinsic pathways typically initiated by “death receptors” and their ligands TRAIL and TNF at the cell surface. Recently, we discovered the apoptotic ring, which microscopically looks like a nuclear annular staining early in apoptosis. This ring is, in three-dimensional space, a thick intranuclear shell consisting of epigenetic modifications including histone H2AX and DNA damage response (DDR) proteins. It excludes the DNA repair factors usually associated with γ-H2AX in the DDR nuclear foci. Here, we summarize our knowledge of the apoptotic ring, and discuss its biological and pathophysiological relevance, as well as its value as a potential pharmacodynamic biomarker for anticancer therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号