首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
以浸入沉积的方法在硅纳米线上修饰了金纳米颗粒,并通过电子扫描显微镜(SEM)和X射线荧光分析(XRF)对金纳米粒子修饰的硅纳米线电极表面形貌进行了表征.以修饰后的硅纳米线电极作为工作电极,采用阳极溶出法检测水中痕量铅和铜,考察pH值、富集电位和富集时间对溶出峰的影响,优化出最佳实验条件.在优化的实验条件下,铅Pb2+和铜Cu2+的灵敏度分别为0.649μA/(μg.L-1)和0.177μA/(μg.L-1).检测极限达到0.26μg.L-1和0.67μg.L-1.峰电流与离子浓度在质量浓度25~200μg.L-1的范围内形成良好的线性关系.  相似文献   

2.
采用控制电位电解法,在玻碳电极((GCE)上进行石墨烯(GN)/壳聚糖(CS)修饰膜的电沉积,将制得的膜修饰电极GN/CS/GCE在0.1 mol·L-1的HAc-NaAc电解液(pH=4.2)于-0.5 V(vs.SCE)电位下富集Cu2+,并用差分脉冲溶出伏安法测定.结果表明,该膜修饰电极对Cu2+的富集作用明显强...  相似文献   

3.
本文用8-羟基喹啉修饰的铅笔芯电极研究了铜的阶梯阳极溶出伏安特性,并将此法用于人发中微量铜的测定。实验指出,在此修饰电极上,铜的阶梯溶出峰有两个,1#峰电位在-0.03V,2#峰电位在0.27V处。同样的试液和条件下,1#峰总比2#峰的峰电流大。实验研究了测定铜的最佳条件,并测得铜的浓度在4.0×10-8~1.6×10-6mol·L-1范围内,1#峰的峰高与浓度呈良好的线性关系,最低检测限为2×10-8mol·L-1。2#峰高与铜的浓度在6.0×10-8~1.6×10-6mol·L-1范围内也有较好的线性关系,也可用于测定铜。本文还分析了铜在修饰电极上的反应机理  相似文献   

4.
壳聚糖修饰电极测定锡   总被引:3,自引:0,他引:3  
~~壳聚糖修饰电极测定锡@张名楠$华侨大学材料科学与工程学院!福建泉州362021 @陈东方$华侨大学材料科学与工程学院!福建泉州362021 @刘斌$华侨大学材料科学与工程学院!福建泉州362021 @徐金瑞$华侨大学材料科学与工程学院!福建泉州362021~~~~1姜和,分光光度法测定镁合金中的锡[J]技术,2003,32(2):61-62 2黄建兵,吴少尉,马艳芳.富氧空气-乙炔火焰原子吸收光谱法侧定地质样品中的微量锡[J].析实验室.2003,22(3):23-25 3Pere-Herranz V,Garcia-Gabaldon M,uinon J L.er al.Effect of citric acid and hydrochloric a…  相似文献   

5.
本文研究了Cu(Ⅱ)在8-羟基喹啉修饰玻碳电极上的阳极溶出伏安特性。电极过程为不可逆过程。当底液为0.1MHAc-0.1MNaAc溶液,预电解电位为-0.6V(Vs.Ag-AgCl)时,铜的阳极溶出峰高比未修饰的纯玻碳电极提高约5倍。检出限可低至0.05ng/ml.150倍Cu(Ⅱ)浓度的Fe3+、50倍的Zn2+、Mn2+、Cr3+、Tl+,25倍的Co2+、Sn2+、Ni2+、Bi3+、Pb2+,5倍的Sb3+、Cd2+和2倍的Hg2+对铜的溶出峰不影响。本法测定了尿铜,对4ng/ml的Cu(Ⅱ)测得  相似文献   

6.
利用电化学方法在石墨烯表面上沉积金-钯纳米粒子,制备了金-钯纳米粒子/石墨烯修饰玻碳电极.扫描电子显微镜和X-射线能谱仪对修饰电极组装过程进行了表征.采用循环伏安法研究了对乙酰氨基酚在修饰电极上的电化学行为,在p H 7.0的磷酸盐缓冲溶液中,对乙酰氨基酚在修饰电极上出现一对明显的氧化还原峰,其氧化还原峰电位分别为0.334V和0.299V.在最佳条件下,对乙酰氨基酚的氧化峰电流与其浓度在5.0×10-7-1.0×10-4mol/L范围内呈良好的线性关系,检出限(S/N=3)为1.0×10-7mol/L.利用该方法对药片中的对乙酰氨基酚含量进行检测,获得的结果令人满意.  相似文献   

7.
用漆酚金属盐聚合物修饰碳糊电极能高灵敏度测定水样中痕量的Cu~(2+)。在pH6.0的HAc+NaAc缓冲溶液中,在电极表面Cu~(2+)通过化学和物理吸附而富集,在溶出过程中,于-0.04V(vs.SCE)处有一灵敏的氧化峰。该修饰电极测定Cu~(2+)的线性范围为4×10~(-9)~2.5×10~(-7) mol/L,富集20min后检测限为8×10~(-11)mol/L。用该修饰电极测定了环境水样中的铜离子,平均回收率为99.10%。  相似文献   

8.
采用铜纳米粒子(平均粒径d≈50nm)修饰的碳糊电极,实现了电化学方法在近中性(pH=8磷酸缓冲溶液)条件下对甘氨酸等15种氨基酸的定量测定,测定的线性范围(甘氨酸)为2.5×1-05~7.4×1-04mol.L-1,最低检测下限(甘氨酸)为2.5×1-06mol.L-1(S/σ>3).  相似文献   

9.
微分脉冲阳极溶出伏安法连续测定葛花中策量锌,铜   总被引:3,自引:0,他引:3  
微分脉冲阳极溶出伏安法测定葛花中微量锌和铜,在0.01mol/L的高氯酸溶液中,锌、铜的有良好的溶出峰。测定结果与原子吸收光谱法以及光度法相符,方法简便、反应灵敏、准确度高。Zn^2+在0~0.8ug/ml、Cu^2+在0~0.4ug/ml分别与其溶出身电流呈良好的线性关系。  相似文献   

10.
11.
12.
张世钢  张占恩 《科学技术与工程》2013,13(8):2170-2173,2177
采用将氯金酸溶液直接分散于多壁碳纳米管中,用该复合物制备修饰电极。在该修饰电极上进行电位还原,得到金纳米粒子/碳纳米管修饰电极。研究了对壬基酚在该电极上的电化学行为。制备的金纳米粒子/碳纳米管修饰电极能显著提高对壬基酚的氧化峰电流。研究了这种修饰电极测定对壬基酚的条件。在最佳条件下,对壬基酚在3×10-7—4×10-5mol/L浓度范围内与氧化峰电流呈现良好的线性关系(r=0.994 6),检出限为1.5×10-8mol/L。对实际样品进行测定,加标回收率为92.6%—100%。  相似文献   

13.
制备了MWNT-石墨糊修饰电极,研究了以该电极为工作电极,用阳极溶出伏安法测定Cu2 的最佳实验条件.在0.6mol/L硫酸溶液中,于-0.6V(vs.SCE)处富集420s后进行阳极溶出伏安扫描.Cu2 浓度在1×10-6-2×10-5mo/L范围内与峰电流成线性关系;在5×10-7-4×10-6mo/L范围内与峰电流二次导数呈线性关系.检出限为1.25×10-7mol/L.  相似文献   

14.
15.
研究了次黄嘌呤在铜电极上的电化学行为。实验发现,以1.96×10^-3 ̄4×10^-4mol·L^-1NaOH作支持电解质时,在-0.25 ̄-0.40V的电位范围内有一灵敏的阴极峰,它是吸附于铜电极表面的Hxa与Cu^+络合物的溶出伏安峰,在选择的实验条件下,峰高与Hxa的浓度在1.46×10^-6 ̄2×10^-3mol·L^-1范围内呈良好的线性关系,最低检测限为5.6×10^-8mol·L^-  相似文献   

16.
采用Hummers法制备还原石墨烯,用滴加法将石墨烯修饰到玻碳电极表面,考察了石墨烯修饰层数、底液pH、富集时间和富集电位对铅离子检测的影响,并选定最佳条件.用线性伏安法在最佳条件下检测溶液中的铅离子,结果表明铅离子的溶出峰电流与其浓度的对数在5×10-6mol/L~8×10-5 mol/L范围内呈良好的线性关系,检测限为3.6×10-7 mol/L.石墨烯/玻碳电极也表现出良好的稳定性、重现性和抗干扰能力,并可用于实际水样的检测.  相似文献   

17.
8—羟基喹啉修饰玻碳电极阳极溶出伏安法测定痕量镉   总被引:3,自引:0,他引:3  
以8-羟基喹啉(Ox)作为修饰剂制备化学修饰电极,用于痕量镉的伏安法测定.研究了支持电解质种类及酸度、修饰膜厚度、富集电位、富集时间、扫描速度等因素对伏安曲线的影响,获得较为优化的测试条件.在0.1mol/LHAc-NaAc缓冲溶液(pH4.0)中,Cd(Ⅱ)的浓度在4.0×10-8mol/L~7.0×10-5mol/L范围内与其氧化峰电流呈良好线性关系(r=0.9933),检测限达2.0×10-8mol/L.该电极具有很好的重现性,在含2.0×10-6mol/LCd(Ⅱ)试液中连续测定10次,其RSD为7.8%.本法用于实际水样测定,获得满意的结果.  相似文献   

18.
本文介绍用阳极溶出伏安法测定超氧化物歧化酶中铜的方法,试样(0.3~0.4mg)经灰化后,用硝酸溶解并蒸干,残留物溶于0.1MNH_4OAc中。取部分该试液放入电解池中用悬汞电极在-1.0V进行预电解,并以线性变位二次导数极谱法测定铜的溶出电流。  相似文献   

19.
采用汞膜玻碳电极阳极溶出伏安法测定墨鱼干、大米和西红柿中的痕量镉和铅.样品先于500℃灰化,继用少量1:1HNO3+H2O2消解,不经任何分离,可直接进行测定,Cd2+和Pb2+的浓度分别低至0.10μg·L-1和0.20μg·L-1时仍能检出.  相似文献   

20.
本文提出了在氨三乙酸(NTA)——乙二胺四乙酸(EDTA)(NH_3)体系中进行银的阳极溶出伏安法测定,排除了数千倍的汞(Ⅱ)、铜(Ⅱ)的干扰,测定下限可达0.002μg·ml~(-1),变异系数≤8%,回收率在80%~117%之间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号