共查询到20条相似文献,搜索用时 15 毫秒
1.
讨论了不可约M-矩阵A的最小特征值l(A)的估计问题。得到了,若A,B∈Rn×n是不可约M-矩阵。记B-1=[bij],A-1=[aij],则l(A oB-1)<2 m ax1 i nakkbkk,且存在正对角矩阵D1=d iag(d1,d2,∧,dn),与D2=d iag(d1,d2,∧,dn),使得m in1 i ndim in1 i ndi l(A)m ax1 i ndi1 m i a nxdi. 相似文献
2.
利用Z-矩阵与非负矩阵的关系,给出了求不可约Z-矩阵最小特征值的一种有效的迭代算法,推广了文献[2]的结果.该算法具有计算量小,易在计算机上实现的特点,并且可以达到实际需要的精度.最后用数值例子表明该算法的可行性和有效性. 相似文献
3.
《云南民族大学学报(自然科学版)》2016,(2):136-139
利用不可约非负矩阵A的Hadamard幂,矩阵特征值存在域定理,以及非奇异M矩阵B的若干性质,首先给出了不可约非负矩阵AB-1的谱半径的上界;其次,当A的每个元素都为1时,给出了τ(B)的一些新下界.数值例子说明这些新界一定程度上提高了已有文献中的结果. 相似文献
4.
首先给出了不可约非负矩阵最大特征值的新估计,并进一步利用相似变换构造了一列相似矩阵,从而得到不可约非负矩阵最大特征值的逐步压缩的上下界,其极限为所要求的最大特征值.然后利用Z-矩阵与非负矩阵的关系,给出了不可约Z-矩阵最小特征值的改进算法.该算法迭代过程简单,迭代速度快.最后用数值实验加以验证. 相似文献
5.
利用Cauchy-Schwitz不等式给出两个非奇异M-矩阵A和B的Fan积的最小特征值下界的一个新估计式。通过数值算例验证,所得的估计结果比现有结果更为精确。 相似文献
6.
钟琴 《安徽大学学报(自然科学版)》2019,43(3)
非奇异M-矩阵最小特征值的估计是矩阵分析理论研究中的重要问题.利用H?lder不等式,给出非奇异M-矩阵最小特征值的下界估计式.新估计式只与M-矩阵的元素有关,易于计算.数值例子说明新估计式改进了现有的相关结果. 相似文献
7.
关于M-矩阵的最小特征值 总被引:3,自引:0,他引:3
讨论了不可约M 矩阵的最小特征值问题,得出若A,B∈Rn×n是不可约M 矩阵,则存在正对角矩阵D1=diag(d1,…,dn)与D2=diag( d1,…, dn),使得D1A-1D2是双随机矩阵且 dk bkk,其中B-1=[ bij].以此结论为工具对某已有结果作出改进;并研究了dkl(A B-1)>min1≤k≤nM 矩阵A的Hadamard幂A r,在r取奇数时,得出lr(A)≤l(A r);还讨论了M 矩阵A的主子矩阵 A,得出l( A)≥l(A). 相似文献
8.
M-矩阵最小特征值的估计是矩阵理论研究中的重要组成部分.如果上下界能够表示为关于M-矩阵元素的易于计算的函数,那么这种估计价值更高.通过构造3个收敛序列得到M-矩阵最小特征值的新界值.该方法易于计算且能得到较紧的界,数值算例表明其结果比有关结论更加精确. 相似文献
9.
钟琴 《兰州理工大学学报》2019,45(5)
矩阵的Fan积是矩阵理论研究的重要问题之一.利用特征值包含域定理给出两个非奇异M-矩阵Fan积最小特征值的下界估计式,所得结果只依赖于两个非奇异M-矩阵的元素,便于计算.数值例子表明新估计式在一定条件下改进了现有的一些结果. 相似文献
10.
关于非奇M-矩阵A与B的Fan积AB,利用Gerschgorin圆盘定理和Brauer定理,给出AB的最小特征值下界的新估计式。新估计式只与矩阵的元素有关。数值算例表明新估计式改进了现有的结果,易于计算。 相似文献
11.
刘新;杨晓英 《甘肃教育学院学报(自然科学版)》2013,(5):4-6,17
对于非奇异M-矩阵A与B,利用Brauer定理和逆矩阵元素的范围,给出B·A-1的最小特征值下界的新估计式.理论分析和数值算例结果说明新估计式改进了现有的结果. 相似文献
12.
李志莲 《天津师范大学学报(自然科学版)》1993,(1)
对于非负不可约矩阵的配朗—弗罗本尼斯定理,本文给出了一种简化证明;同时提出了计算非负不可的矩阵主特征值的一种方案,并且讨论了算法的收敛性和精度估计。 相似文献
13.
对严格对角占优M-矩阵A的最小特征值τ(A)经典的下界估计式应用该类矩阵逆矩阵A-1元素的上界新的提高的估计式1/aii≤αii≤1/aii+∑j≠1aiipji与1/aii≤αii≤1/aii+∑j≠1aiinji,i∈n,得到τ(A)新的提高的且易于计算的界. 相似文献
14.
王峰 《山东大学学报(理学版)》2013,48(8):30-33
给出了非奇异M-矩阵的逆矩阵和M-矩阵的Hadamard积的最小特征值下界新的估计式, 这些估计式都只依赖于矩阵的元素,易于计算,改进了已有的结果。 相似文献
15.
李艳艳 《文山师范高等专科学校学报》2011,24(3):37-40
给出非奇异M-矩阵A的逆矩阵A-1与M-矩阵B的Hadamard积小A-1的最小特征值下界的一些新估计式。这些估计式只依赖于矩阵A与曰的元素,易于计算。例证表明,所得估计式在一定条件下比现有估计式更为精确。 相似文献
16.
蒋建新 《四川理工学院学报(自然科学版)》2013,26(3):95-97
利用严格对角占优M-矩阵的逆矩阵主对角元的估计式与非奇异M-矩阵的最小特征值τ(A)的下界估计式,给出严格对角占优M-矩阵的最小特征值新的且易于计算的估计式。 相似文献
17.
利用著名的Gerschgorin圆盘定理,给出了非负矩阵A与非奇异M-矩阵B的逆矩阵B-1的Hadamard积AB-1的谱半径ρ(AB-1)两个新的上界估计式,利用τ(B)=1ρ(B-1)这一性质,从而得到M-矩阵B最小特征值的两个新下界估计式.算例表明,所得的估计式在一定条件下优于现有的估计式,且这些估计式只依赖于矩阵的元素,容易计算. 相似文献
18.
利用Gerschgorin和Brauer定理,先给出非负矩阵A4与非奇异B矩阵的逆矩阵Hadamard积的谱半径上界,同时利用特征值与谱半径的关系得到非奇异M-矩阵最小特征值下界的新估计式.通过数值算例表明了新估计式优于已有的结论. 相似文献
19.
文章给出了非奇异M-矩阵A与非奇异M-矩阵B的逆矩阵的Hadamard积的最小特征值下界的估计式.示例表明,文中所得估计式在某些情况下可得到比现有估计式更为精确的结果. 相似文献
20.
利用严格对角占优M矩阵A的逆矩阵A-1的主对角元素新的估计式,得到了该类矩阵最小特征值τ(A)的新估计式,理论证明说明新的估计式改进了李朝迁2013年给出的结果,而数值算例也对结果进行了进一步的验证。 相似文献