首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
镁合金因其低密度、高强度重量比和尺寸稳定性等优点,在汽车、医疗和电子通信领域具有很高的应用价值和广泛的应用前景。然而,镁合金在腐蚀环境中较差的耐腐蚀性在很大程度上限制了其广泛应用。因此,本文旨在通过微弧氧化技术、电沉积技术和自组装技术相结合,在镁合金AZ91D上制备一种具有优异耐腐蚀性的微弧氧化/氧化石墨烯/硬脂酸(MAO/GO/SA)超疏水复合涂层。通过扫描电子显微镜、X射线衍射、能量色散光谱和拉曼光谱对涂层的组成和微结构进行了表征。利用极化曲线、电化学阻抗谱和盐雾实验,评估了MAO/GO/SA复合涂层的防腐蚀性能。研究结果表明,所制备的超疏水复合涂层具有花瓣状球形结构,其接触角达到了159.53° ± 2°,具有优越的超疏水性和抗污性能。而且,MAO/GO/SA复合涂层也表现出较好的耐腐蚀性能,其腐蚀电流密度比镁合金基体低三个数量级,阻抗大三个数量级,耐盐雾腐蚀时间达192 h。  相似文献   

2.
针对目前促成滴状冷凝换热的超疏水表面造价昂贵、热导率低和综合性能差等问题,以可溶性聚四氟乙烯、改性石墨烯(C)、气相二氧化硅等为原料,通过共混法在不锈钢基材上制备了用于冷凝传热表面的高导热超疏水复合涂层,并对其耐腐蚀能力、导热系数、强度和蒸汽冷凝传热性能进行测试分析。结果表明,涂层的耐酸腐蚀性能、导热性能强于304不锈钢,当含3%的C时,导热系数为18.188W·(m·K)-1,在20%硫酸浓度恒温30℃条件下腐蚀速率为0.201mg·(cm2·h)-1,和基材结合强度达38MPa。SEM分析表明,涂层疏水性能与气相二氧化硅含量有关,且质量分数为10%时接触角达155°。冷凝实验表明常压蒸汽在涂层表面冷凝时传热系数达120k W·(m2·K)-1,大于不锈钢表面近10倍,并得出其滴状冷凝不持久的原因。  相似文献   

3.
以气相纳米二氧化硅、正硅酸乙酯(TEOS)和六甲基二硅氮烷(HMDS)为原料,采用溶胶-凝胶法制备杂化硅溶胶,将 γ-(2,3-环氧丙氧)丙基三甲氧基硅烷(KH560)和烷基硅氧烷制备的有机硅低聚物与杂化硅溶胶复合得到透明超疏水涂层,研究了气相纳米二氧化硅 、HMDS和KH560用量以及烷基硅氧烷种类对复合涂层性能的影...  相似文献   

4.
本研究采用微弧氧化与电化学沉积相结合的方法在镁合金(Mg-Zn-Zr)表面制备Ca-P生物陶瓷涂层.利用XRD、SEM、划痕仪、显微镜以及电化学工作站等测试手段来表征所得到的生物陶瓷的成分组成、表面形貌、涂层与机体的结合力、涂层厚度以及涂层材料的耐腐蚀性能.结果表明:在沉积溶液相同的情况下,沉积时间都为30 min,直流电沉积电流大小制备的Ca-P生物陶瓷涂层成分近似相同,主要成分为Ca HPO4·2H2O和Ca HPO4;在沉积电流为20 m A时,直流电沉积制备的Ca-P陶瓷涂层的腐蚀电位达到最大值-1.49 V,腐蚀电流密度达到最小值0.24×10-6A·cm-2,其耐蚀性能也最强.  相似文献   

5.
将全氟辛基三乙氧基硅烷(FAs)改性的二氧化硅颗粒与有机蒙脱土(OMMT)混合制成溶胶,采用浸渍提拉法制备具备超疏水性能的复合涂层,研究了二氧化硅/OMMT不同配比对涂层疏水性能的影响。结果表明,复合涂层的静态接触角随二氧化硅/OMMT质量比的增加而增大,滚动角随二氧化硅/OMMT质量比的增加而减小。通过扫描电子显微镜(SEM)观察涂层表面微观结构,发现超疏水涂层表面具有微纳米复合结构,结合FAS改性二氧化硅的低表面能,赋予了复合涂层优良的超疏水性能。  相似文献   

6.
为了改善传统钢铁表面较差的抗结霜性能,对钢片表面先后进行高能微米喷丸处理和氟化处理,采用扫描电子显微镜、接触角测量仪和抗结霜试验设备研究了钢片表面形貌、浸润性和抗结霜性能的变化.结果表明,高能微米喷丸处理在钢片表面成功构建了微米一纳米复合结构,且喷丸尺寸越细小,得到的微观结构越细小均匀.喷丸一氟化复合处理后,钢片表面与水滴接触角可高达160.,滚动角小于2.,显示出超疏水性和低黏附性.低温结霜试验表明,制备的超疏水钢片在试验过程中只有少量的霜晶出现,而未经处理的钢片已形成霜层.分析认为超疏水钢表面与水滴间的热量交换较小,水滴不易凝结,从而有效地提高了抗结霜性.抗结霜性良好的超疏水钢有望在热交换器或低温运行设备等领域获得应用.  相似文献   

7.
结构保护法、保护层法、防护层材料法、电化学保护法和介质处理法等是金属防腐蚀的主要方法,在诸多缓蚀方法中,防护层材料法是一种经济高效且广泛使用的防腐方法。环氧树脂是一种高效的防护层材料,需经过常温固化或加热固化后使用。然而,其固化过程存在的微孔会弱化环氧涂层的耐蚀性。将纳米材料加入环氧树脂中形成环氧树脂复合涂层,可填补环氧涂层中的微孔,提升环氧涂层的防腐效率。首先,详细讨论了影响纳米材料/环氧复合涂层耐蚀性能的因素,探讨了纳米材料/环氧复合涂层的防腐机理。其次,简要介绍了用于环氧涂层的2种纳米材料(石墨烯和金属有机框架材料),总结了石墨烯和金属有机框架材料的改性和修饰方法。最后,从树脂成分、填料成分、机理探究以及开发自愈合涂层等方面对纳米材料/环氧复合涂层应用存在的问题和发展前景进行了展望,提出纳米材料/环氧复合涂层是一种长期防护金属免受腐蚀的方法,未来应致力于研发用于环氧涂层的二维和三维材料。  相似文献   

8.
在可溶性聚四氟乙烯(PFA)、聚四氟乙烯(PTFE)及环氧树脂(EP)中添加纳米二氧化硅等材料,制备了应用于冷凝式换热器表面的超疏水自清洁性复合涂层。对复合涂层进行接触角、导热系数、耐磨性、结合强度及自清洁性测试,研究其综合性能。测试结果表明,含7.5%~9.4%纳米SiO2的PFA涂层与含1.4%~2.3%纳米SiO2的PTFE涂层接触角均在150°以上,其表面自清洁性优异。添加0.8%~1.7%的石墨可将涂层的导热系数由0.2 W·m-1·K-1提升至2 W·m-1·K-1以上。涂层的耐磨性随SiC含量的增加而提升,对于PFA超疏水涂层,添加SiC能使涂层被砂纸打磨后仍能保持良好的疏水性。EP涂层的结合强度达ASTM(美国材料与试验协会)等级5B,PFA涂层为4B,PTFE涂层为3B。  相似文献   

9.
为提高AH32船板用钢在模拟海洋环境下的耐蚀性,利用热丝增强等离子体磁控溅射技术对AH32船板用钢表面进行离子渗氮并在渗氮后的表面制备了Cr(Ti)N复合涂层。利用扫描电镜观察了不同涂层的截面组织形貌;利用失重法测试不同涂层在人工海水中的耐冲刷腐蚀能力;利用X射线衍射、扫描电镜表征了不同涂层冲刷实验后腐蚀产物的成分和形貌;利用电化学工作站测量了不同涂层耐蚀性,并讨论了不同涂层与基体在人工海水中的腐蚀机理。结果表明:离子渗氮和渗氮后沉积Cr(Ti)N涂层均能提高AH32钢基体的耐蚀性。离子渗氮的涂层与离子渗氮后沉积Cr(Ti)N涂层的年平均腐蚀失重率分别为1 485 g/m2·a和1 278 g/m2·a,均明显低于基体的年平均腐蚀失重率(2 134 g/m2·a)。离子渗氮和渗氮后沉积Cr(Ti)N复合涂层均可提高涂层的自腐蚀电位,渗氮后沉积Cr(Ti)N涂层的腐蚀电流密度与基体相比下降了一个数量级,渗氮后沉积Cr(Ti)N涂层的耐蚀性最佳。  相似文献   

10.
为提高AH32船板用钢在模拟海洋环境下的耐蚀性,利用热丝增强等离子体磁控溅射技术对AH32船板用钢表面进行离子渗氮并在渗氮后的表面制备了Cr(Ti)N复合涂层。利用扫描电镜观察不同涂层的截面组织形貌;利用失重法测试不同涂层在人工海水中的耐冲刷腐蚀能力;利用X射线衍射、扫描电镜表征了不同涂层冲刷实验后腐蚀产物的成分和形貌;利用电化学工作站测量了不同涂层耐蚀性,并讨论了不同涂层与基体在人工海水中的腐蚀机理。结果表明:离子渗氮和渗氮后沉积Cr(Ti)N涂层均能提高AH32钢基体的耐蚀性。离子渗氮的涂层与离子渗氮后沉积Cr(Ti)N涂层的年平均腐蚀失重率分别为1 485 g/m~2·a和1 278 g/m~2·a,均明显低于基体的年平均腐蚀失重率(2 134 g/m~2·a)。离子渗氮和渗氮后沉积Cr(Ti)N复合涂层均可提高涂层的自腐蚀电位,渗氮后沉积Cr(Ti)N涂层的腐蚀电流密度与基体相比下降了一个数量级,渗氮后沉积Cr(Ti)N涂层的耐蚀性最佳。  相似文献   

11.
利用电弧喷涂工艺在钢铁基体表面全部或部分地喷涂铝涂层,考察了涂层对裸露于腐蚀介质中钢材基体的防护作用,以失重法计算了静态腐蚀速度与动态腐蚀速度,并探讨了腐蚀机理.用扫描电镜(SEM)对铝涂层腐蚀前后的外表形貌进行了观察,并测定了涂层的孔隙率.研究结果表明,当腐蚀介质为NaCl溶液(其质量分数为5.0%)、实验温度为(50±1)℃、介质流速为1 m/s时,铝涂层的动态腐蚀速度为静态腐蚀速度的2倍.裸露于腐蚀介质中的钢铁面积增大,促使阴极去极化过程快速进行,腐蚀速度加快,涂层防护寿命缩短.涂层表面上氧化膜的自愈能力及涂层表面上沉积的白锈具有阻碍铝作为阳极牺牲从而保护阴极的功效.涂层中的贯通孔隙对削弱铝涂层的防护作用,随腐蚀过程进行而逐步减弱.  相似文献   

12.
冷轧钢表面硅烷膜的制备及耐蚀性能研究   总被引:3,自引:0,他引:3  
文章采用浸涂技术,在不同方式预处理的冷轧钢板(CRS)表面制备γ-氨丙基三甲氧基硅烷膜,通过电化学方法和SEM研究硅烷膜在质量分数为3.5%NaCl溶液中的耐蚀性能及冷轧钢腐蚀前后的形貌变化。结果表明,浸涂前分别采用质量分数均为0.10%CeCl3溶液和NaOH溶液(特别是CeCl3溶液)对冷轧钢表面进行成膜前预处理,均有利于冷轧钢表面形成均匀致密的硅烷膜,使冷轧钢在3.5%NaCl溶液中的腐蚀电流密度明显降低,腐蚀反应的极化电阻明显增大,耐蚀性能明显提高。经SEM测试表明,腐蚀前后冷轧钢表面硅烷膜的形貌几乎不变。  相似文献   

13.
微米级镀银铜粉复合导电涂层的导电性研究   总被引:12,自引:0,他引:12  
以SEM与XRD为表征手段,较详细地研究了微米级镀银铜粉作为导电填料所形成的复合型导电涂膜的亚微观结构与其导电性能的关系,探讨了镀银铜粉的镀层结构、几何尺寸与形貌、含量、基体树脂的类型等因素对涂膜导电性能的影响规律,并用导电通道理论与隧道效应理论分析了这些影响规律.  相似文献   

14.
提出了一种改进的复合电沉积制备钢基超疏水表面的方法.通过在Q235基材上构筑微纳米的NinSiO_2表面,实现了Q235钢基超疏水表面的制备.首先改进复合电沉积工艺;然后通过正交实验和极差分析,分析镀液中Ni ~(2+)含量对表面超疏水性能的影响,确定最佳镀液配方;最后探究电流密度、阳极速度和时间对表面超疏水性能的影响,并基于此对工艺参数进行优化.最终确定当Ni ~(2+)浓度为0.5mol/L、电流密度为37.5A/dm~2、阳极速度为8m/min、沉积时间为3min时,可制备出表面接触角为153.5°,滚动角为6.5°的超疏水表面.  相似文献   

15.
通过机械球磨方法在铝合金表面制备了Ni-Al-Mo复合涂层,对涂层微观组织、组成成分和摩擦学性能等进行了分析.结果表明:经过7 h机械球磨制备的Ni-Al-Mo复合涂层内元素均匀分布;550℃退火后涂层中均有Al3 Ni金属间化合物新相生成;复合涂层中Al3 Ni和Mo的存在使得涂层硬度高于铝合金基体和Ni-Al涂层,...  相似文献   

16.
激光表面合金化制备TiC/Ti复合涂层的组织与性能   总被引:3,自引:2,他引:3  
利用激光表面合金化技术在工业纯钛表面制备TiC/Ti复合涂层,并对复合涂层的组织与性能进行了分析和测试,对TiC的合成机理进行了探讨.研究结果表明,复合涂层由合金化层和热影响区组成.合金化层由TiC和α′-Ti构成,TiC的生长形貌包括树枝状、十字花瓣状、胞枝状以及针状,热影响区主要由α-′Ti构成.合金化层的平均显微硬度为HV 420.TiC的合成过程分为三个阶段:激光辐照时,固态C颗粒迅速扩散至激光熔池并被液态Ti包围;首先固-液结合界面处的Ti和C直接反应形成TiCx,随后液Ti扩散并穿过TiCx层与剩余的C进行反应,直至TiCx中C的浓度达到TiC中C的浓度,生成的TiC溶于液相中;快速凝固过程中,TiC从溶液中析出并长大.  相似文献   

17.
18.
为了研究改性纳米Si O2+有机成膜涂层对混凝土疏水和抗碳化性能的影响,配制了6种改性和未改性纳米Si O2有机成膜复合涂料,测定了涂覆复合涂料后混凝土的表面接触角,确定了涂料中纳米Si O2的最佳添加量。通过测定涂层混凝土的吸水率发现,改性和未改性纳米Si O2可以显著提高涂层混凝土的憎水性,其中改性纳米Si O2的改善幅度更大,同时混凝土的吸水率与其接触角呈一阶线性负相关的关系;通过涂层混凝土的加速碳化试验发现,改性和未改性纳米Si O2可以有效改善涂层混凝土的抗碳化性能,其中改性纳米Si O2的改善效果更好,而且还发现涂层混凝土的疏水能力和抗碳化性能之间存在正相关关系,即表面涂层疏水性能越强,混凝土抗碳化性能越好。  相似文献   

19.
改性纳米碳酸钙制备超疏水涂层   总被引:1,自引:0,他引:1  
通过油酸改性纳米碳酸钙颗粒使其表面由亲水性变成了疏水性,改性后的纳米颗粒与低表面能的有机硅树脂聚二甲基硅氧烷经过混合陈化固化过程后在玻璃表面形成超疏水涂层.实验通过改性后的纳米粒子在聚合物介质上构造纳米/微米尺度的结构表面.用接触角测量仪和扫描电镜分别检测涂层的疏水性能和涂层的表面形态.实验结果表面涂层有优异的自清洁能力,平均静态水接触角达160°滚,动角为6°,涂层表面成功构造了纳米/微米的双重粗糙结构.该方法简单有效具有很大的应用前景.  相似文献   

20.
对采用TMCP工艺在实验室热轧研制的Q460qNH钢的耐蚀性能进行研究,采用干湿交替实验室加速腐蚀实验(ACT)和电化学实验测极化曲线研究了Q460qNH的耐蚀性能.与某厂生产的高强度桥梁钢Q460q和耐蚀性能优良的SPA-H耐候钢进行了对比,结果表明Q460qNH钢的耐蚀性能与SPA-H钢的接近,但明显高于Q460q钢;在普通Q460q桥梁钢中加入0.2%~0.3%Cr,0.15%~0.25%Ni,0.2%~0.3%Cu就可以使其耐大气腐蚀性能显著提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号