共查询到20条相似文献,搜索用时 0 毫秒
1.
人脸图像超分辨率技术,又名人脸幻觉,可根据给定的低分辨率人脸图像中恢复出对应的高分辨率人脸图像.该技术无论是在学术界还是在工业界都具有非常广泛的应用前景.人脸,作为一种具有高度结构先验的对象,其结构先验可以为网络提供结构信息,从而辅助人脸图像超分辨率任务的执行,改善人脸图像超分辨率性能.因而许多基于结构先验的人脸图像超分辨率方法被提出.为了了解和掌握基于结构先验的人脸图像超分辨率技术的发展状况,本文对其进行了系统的总结与归类,主要从先先验、并行先验、中间先验和后先验,四个方面对基于结构先验的人脸图像超分辨率技术进行概述.最后分析基于结构先验的人脸图像超分辨率技术存在的问题与挑战. 相似文献
2.
基于像素及梯度域双层深度卷积神经网络的页岩图像超分辨率重建 总被引:2,自引:1,他引:2
实际采集的页岩图像存在分辨率低等不足,有时难以满足实际应用的需求。针对此问题,构建了一种基于双层深度卷积神经网络的页岩图像超分辨率重建算法。算法以深度卷积神经网络为基础,引入残差训练及批规范化层来加速网络的收敛,并且在此神经网络的基础上提出图像像素域及梯度域结合的页岩图像超分辨率重建算法。算法大致过程为首先利用像素域的卷积神经网络对输入的低分辨率页岩图像进行上采样;然后对上采样图像提取梯度信息并利用梯度域的卷积神经网络对其进行转换;最后利用转换后的梯度信息作为正则项来约束高分辨率图像的重建,从而得到重建的高分辨率页岩图像。实验表明,与主流的超分辨率重建算法相比,重建得到的页岩图像具有更好的主观视觉效果与更高的客观评价参数,更利于后续的处理及分析。 相似文献
3.
《云南民族大学学报(自然科学版)》2019,(6):597-605
图像超分辨率重建(super-resolution, SR)是指从观测到的低分辨率图像重建出相应的高分辨率图像,在目标检测、医学成像和卫星遥感等领域都有着重要的应用价值.近年来,随着深度学习的迅速发展,基于深度学习的图像超分辨率重建方法取得了显著的进步.为了把握目前基于深度学习的图像超分辨率重建方法的发展情况和研究热点,对一些最新的基于深度学习的图像超分辨率重建方法进行了梳理,将它们分为两大类(有监督的和无监督的)分别进行阐述.然后,在公开的数据集上,将主流方法的性能进行了对比分析.最后,对基于深度学习的图像超分辨率重建方法进行了总结,并对其未来的研究趋势进行了展望. 相似文献
4.
微弱目标易被周围环境中强烈的噪声干扰,为解决现有目标跟踪算法由于低信噪比导致跟踪准确度低的问题,提出一种将引导图像滤波器和深度去噪自编码器集成到粒子滤波器框架中的跟踪算法。通过引导图像滤波(guided image filter, GIF)算法对目标图像进行滤波处理,保留有价值的模板信息并使不准确的背景模板模糊,有效增强目标图像;通过改进的深度学习算法对深度去噪自编码器训练和微调,更好地适应目标外观变化;构造粒子分类器框架根据粒子重要性权重定位目标。实验结果表明,该算法在微弱目标跟踪准确度和抗干扰能力上优于多种现有主流跟踪算法。 相似文献
5.
深度Q神经网络(deep Q-network,DQN)算法在训练初期,由于动作选择随机性强,导致算法的训练时间过长。针对该问题,文章提出一种结合先验知识的深度Q神经网络(priori knowledge-DQN,PK-DQN)算法,将先验知识定义为特征状态与最优动作的映射,根据先验知识对动作选择过程的影响程度,将先验知识引入DQN算法,优化DQN算法的动作选择规则,降低其在探索过程中的动作选择随机性,并使用赛车游戏对算法进行训练。实验结果表明,PK-DQN算法能够更快收敛,有较高的学习效率,算法训练时长明显缩短。 相似文献
6.
卷积神经网络凭借其强大的表征能力,在图像超分辨率任务上取得了许多令人满意的结果。许多基于神经网络的方法采用增加网络深度的方式,存在存储空间消耗多、实用性不强的问题。为解决该问题,该文提出一种基于多尺度特征融合的属性感知人脸图像超分辨率网络。该文借助局部残差模块和逐元素相加的融合方式以减少网络复杂性并提炼出表征能力优秀的多尺度特征。该文构建一个可自适应地融合多尺度特征和人脸先验的属性感知模块,使得网络学习到更丰富的语义信息。该文提出的网络由多个网络子模块级联构成,并通过一个多层次特征融合模块进行共同学习。试验表明:该文方法能取得良好的超分辨率性能,输出更加真实的人脸图像,可以通过调整人脸属性信息进行人脸图像生成效果的操纵。 相似文献
7.
卷积神经网络由于其强大的非线性表达能力在自然图像的处理问题中已经获得了非常大的成功。传统的稀疏表示方法利用精确配准的高分辨率多光谱图像,从而限制了实际应用。针对传统方法的不足,本文提出了一种基于深度残差卷积神经网络的单高光谱图像超分辨率方法,无需对应的多光谱图像。我们构建深度残差卷积神经网络挖掘低分辨率遥感图像和高分辨率遥感图像之间的非线性关系。构建的深度学习网络串联多个残差块,并去除一些不必要的模块,如批标准化层,每个残差块只包含两个卷积层,这样在保证模型效果的同时又加快模型的效率。此外,因为遥感图像训练数据缺乏,我们充分挖掘自然图像和高光谱图像之间的相似性,利用自然图像样本训练卷积神经网络,进一步利用迁移学习将训练好的网络模型引入到高分辨率遥感图像超分辨问题上,解决了训练样本缺乏问题。最后,基于实际的遥感数据超分辨实验结果表明,本文所提出的方法具有良好的性能,能得到较好的超分辨效果。 相似文献
8.
当输入图像因污迹、噪声和采样而严重退化时,目前基于Papoulis-Gerchberg(PG)算法的大多数超分辨率方法表现不佳.因此,提出了一种基于扩散驱动先验和PG算法的超分辨率方法,能够在提高图像分辨率的同时,估计缺失的高频分量.首先提出了一种新型扩散驱动平滑的先验,能够在平坦和轮廓区域之间自动平衡作用,确保正则化水平以产生清晰图像.然后,将PG算法引入到迭代过程中,以估计重构场景中缺失的小规模特征.实验结果表明,相比现有的超分辨率方法,提出方法的峰值信噪比和结构相似指数结果更高,重构图像更加清晰且无伪影. 相似文献
9.
陈程 《内蒙古师范大学学报(自然科学版)》2021,50(2):154-157,164
为了提高建筑工程沉降变形预测的准确性,设计了基于小波去噪和神经网络的建筑工程沉降变形预测模型.首先采集建筑工程沉降变形相关数据,并采用小波去噪消除噪声对建模过程带来的干扰;然后采用神经网络对去噪后的数据进行建模,构建建筑工程沉降变形预测模型;最后通过建筑工程沉降变形预测实验对预测模型的性能进行了测试.测试结果表明,该模... 相似文献
10.
由给定观测模型和先验模型组合得到潜在高分辨率图像后验分布逼近值,将其作为先验知识进行迭代获得更多的后验逼近值。根据高分辨率图像分布情况得到一特定逼近值以最大程度减小后验分布与Kullback-Leibler距离之差。同时也进行了文中算法与其它超分辨率重建方法的对比研究,实验表明,本算法重建效果较好。 相似文献
11.
深度相机在最近几年越来越流行,然而受限于设备,通过深度相机获取的深度图像分辨率不高。文章提出了一种新的方法来提高这类图像的分辨率。首先通过细分模型构建目标分辨率图像的边界图,并通过"节点压缩算法"生成光滑的边界图;其次在该边界图的基础上,利用改进的联合双边滤波来重建高分辨率深度图像。该文提出的方法不仅降低了边界的锯齿现象,且具有良好的保形性。实验结果表明,该方法优于经典的方法。 相似文献
12.
从低分辨率图像中提取特征图恢复高分辨率图像中的高频信息是超分辨率重建的一个关键问题,针对该问题提出一个新的基于卷积神经网络的超分辨率重建算法.网络结构由卷积层与子像素卷积组成,特征提取网络中卷积层提取低分辨率图像的特征,重建网络中子像素卷积神经网络作为上采样算子.针对不能充分利用多级特征图的问题,采用跳跃连接和特征图联结在特征提取网络末端跨通道融合特征图,同时降低特征图的维度.并在此基础上再次提取特征图应用于重建.实验结果表明,算法在PSNR、SSIM和人类视觉效果上与其他基于深度学习的算法相比有着显著的提高. 相似文献
13.
为利用多尺度信息重建超分辨率图像,提出多尺度卷积神经网络的图像超分辨率重建算法。算法利用不同尺度的卷积核提取图像特征,为图像重建提供不同大小的邻域信息;用瓶颈层融合多尺度特征图,增强网络非线性表示能力,降低中间层输出的维数,提高图像的超分辨率重建性能。多个测试集上的实验结果表明,多尺度卷积神经网络算法优于现有的单幅图像超分辨率方法。 相似文献
14.
为了提高低照度图像去噪处理的整体效果,本次研究提出了基于模糊均差的低照度图像平滑去噪方法。采用Sobel梯度检测图像边缘信息,采用OTSU(Nobuyuki otsu 大津展之)阈值分割法分割图像为平坦区域和细节区域;通过模糊均差方法分别估计两个区域图像的噪声标准差;采用小波域方法对图像进行平滑软阈值去噪,实现低照度图像的平滑去噪。实验结果显示,本文方法可以在不同噪声水平下获取接近真实值噪声标准差,在噪声水平最大时信噪比大小达到了27.97dB,去噪效果达到92.1%,质量很好的图像数量占比达到了80.58%,图像信息损失较小,去噪效果较好,具有极大的应用价值。 相似文献
15.
为了改善小波阈值去噪算法中硬阈值和软阈值存在的不足,提出一种新的小波阈值去噪方法.该算法在进行小波阈值去噪前,先将图像分割成背景平坦区域和细节区域两部分,然后分别进行小波阈值去噪,最后融合两图像从而获得去噪图像.在分别进行小波阈值去噪时,利用迭代法进行阈值选择,采用"软、硬阈值折中"阈值函数.根据对医学图像去噪的仿真实验结果表明,该算法在去噪效果上均优于传统的软硬阈值方法. 相似文献
16.
17.
针对实际拍摄的亚像素信息较少的低分辨率运动图像,重构图像通常较为模糊,甚至不能分辨。为此,提出一种新的基于残差神经网络的高强度运动超分辨率图像重构方法。令沿运动方向的亮度保持恒定,通过光流场匹配实现高强度运动图像的运动估计;根据运动估计结果和超分辨率重构的基本思想,将BP神经网络看作残差神经网络的基础建立残差神经网络,对残差神经网络进行训练,参照训练样本将经插值法放大若干倍的待重构高强度运动图像作为输入,将高分辨率图像和输入图像间的残差作为输出,把输入和输出累加获取超分辨率图像,实现若干放大倍数高强度运动超分辨率图像的重构。实验结果表明,所提方法运动估计准确,重构图像清晰、质量佳。 相似文献
18.
针对VDSR模型卷积核单一和DRRN模型不能全局利用的问题,提出了基于并行残差卷积神经网络的联合卷积图像超分辨重建模型。模型首先利用原始卷积层和扩张卷积层融合,建立联合卷积层,然后利用跳跃链接,将多种抽象层次的特征进行融合,最后完成整个超分辨网络的模型构建。提出的模型具有以下优点:①扩张卷积神经网络与原始卷积神经网络融合,在计算机复杂度不变的情况下,可以获取更多尺度的信息,因此具有更强的表达能力;②跳跃链接方式,将抽象层度较低与较高抽象层次的信息融合,获取更多的信息,使得模型具有更强的学习能力。通过在多个数据集上进行实验,模型在大多数任务中与VDSR、DRRN和SRCNN等先进模型相比,IFC值取得了大于0.1的提升。 相似文献
19.
基于深度卷积神经网络的单幅图像超分辨率重建取得了显著研究成果.但随着深度卷积神经网络规模的不断扩大,如何降低网络构建难度和计算成本成为一个难点.为此,提出了一种双通道多感知卷积神经网络(DMCN)模型.该模型在两条具有不同卷积核的通道上建立了稠密连接,并构建了带有动态调节能力的层间融合结构.这种结构的设计使得小规模卷积神经网络便能获得图片特征信息的全面感知能力.实验结果表明,DMCN重建效果优于目前多数具有代表性的重建算法. 相似文献
20.
探讨了暗通道先验去雾算法的原理,针对暗通道先验去雾算法时间复杂度太大的缺点,提出用快速有效的巴特沃兹低通滤波器代替复杂的软抠图方法实现对透射率的平滑与细化;针对暗原色图像在景深交界处存在白边现象采用求区域最大值法加以修正;并给出了自适应的求解全局大气光算法.实验结果表明,改进的暗通道去雾算法在获得满意的图像去雾效果的同时能大大提高图像去雾算法的速度,能满足工程上的实时应用要求. 相似文献