首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Makita T  Sucov HM  Gariepy CE  Yanagisawa M  Ginty DD 《Nature》2008,452(7188):759-763
During development, sympathetic neurons extend axons along a myriad of distinct trajectories, often consisting of arteries, to innervate one of a large variety of distinct final target tissues. Whether or not subsets of neurons within complex sympathetic ganglia are predetermined to innervate select end-organs is unknown. Here we demonstrate in mouse embryos that the endothelin family member Edn3 (ref. 1), acting through the endothelin receptor EdnrA (refs 2, 3), directs extension of axons of a subset of sympathetic neurons from the superior cervical ganglion to a preferred intermediate target, the external carotid artery, which serves as the gateway to select targets, including the salivary glands. These findings establish a previously unknown mechanism of axonal pathfinding involving vascular-derived endothelins, and have broad implications for endothelins as general mediators of axonal growth and guidance in the developing nervous system. Moreover, they suggest a model in which newborn sympathetic neurons distinguish and choose between distinct vascular trajectories to innervate their appropriate end organs.  相似文献   

2.
R J Schotzinger  S C Landis 《Nature》1988,335(6191):637-639
Mammalian sympathetic neurons in vivo may express either a noradrenergic or cholinergic phenotype. In view of the opposing effect of noradrenaline and acetylcholine on most autonomic target organs, the target-appropriate expression of neurotransmitter is critical. We have examined the maturation of the sympathetic innervation of rat sweat glands to define the developmental mechanisms regulating neurotransmitter choice in vivo. Eccrine sweat glands and their sympathetic innervation develop together postnatally in the rat. Early postnatal innervation expresses only noradrenergic properties, but as the glands and their innervation mature, noradrenergic properties decrease dramatically and cholinergic features appear in the same population of neurons. To investigate the role of the sweat gland in this change we have used a transplantation paradigm which allows sweat glands to be innervated by sympathetic neurons that would normally innervate noradrenergic target organs and remain noradrenergic throughout life. We observe that the sympathetic neurons that innervate the novel cholinergic target alter their neurotransmitter properties and develop a cholinergic phenotype. These results indicate that target organs are able to induce appropriate neurotransmitter traits in the neurons that innervate them.  相似文献   

3.
Prather JF  Peters S  Nowicki S  Mooney R 《Nature》2008,451(7176):305-310
Brain mechanisms for communication must establish a correspondence between sensory and motor codes used to represent the signal. One idea is that this correspondence is established at the level of single neurons that are active when the individual performs a particular gesture or observes a similar gesture performed by another individual. Although neurons that display a precise auditory-vocal correspondence could facilitate vocal communication, they have yet to be identified. Here we report that a certain class of neurons in the swamp sparrow forebrain displays a precise auditory-vocal correspondence. We show that these neurons respond in a temporally precise fashion to auditory presentation of certain note sequences in this songbird's repertoire and to similar note sequences in other birds' songs. These neurons display nearly identical patterns of activity when the bird sings the same sequence, and disrupting auditory feedback does not alter this singing-related activity, indicating it is motor in nature. Furthermore, these neurons innervate striatal structures important for song learning, raising the possibility that singing-related activity in these cells is compared to auditory feedback to guide vocal learning.  相似文献   

4.
Population density affects sex ratio variation in red deer.   总被引:16,自引:0,他引:16  
Many mammal populations show significant deviations from an equal sex ratio at birth, but these effects are notoriously inconsistent. This may be because more than one mechanism affects the sex ratio and the action of these mechanisms depends on environmental conditions. Here we show that the adaptive relationship between maternal dominance and offspring sex ratio previously demonstrated in red deer (Cervus elaphus), where dominant females produced more males, disappeared at high population density. The proportion of males born each year declined with increasing population density and with winter rainfall, both of which are environmental variables associated with nutritional stress during pregnancy. These changes in the sex ratio corresponded to reductions in fecundity, suggesting that they were caused by differential fetal loss. In contrast, the earlier association with maternal dominance is presumed to have been generated pre-implantation. The effects of one source of variation superseded the other within about two generations. Comparison with other ungulate studies indicates that positive associations between maternal quality and the proportion of male offspring born have only been documented in populations below carrying capacity.  相似文献   

5.
Alilain WJ  Horn KP  Hu H  Dick TE  Silver J 《Nature》2011,475(7355):196-200
Spinal cord injuries often occur at the cervical level above the phrenic motor pools, which innervate the diaphragm. The effects of impaired breathing are a leading cause of death from spinal cord injuries, underscoring the importance of developing strategies to restore respiratory activity. Here we show that, after cervical spinal cord injury, the expression of chondroitin sulphate proteoglycans (CSPGs) associated with the perineuronal net (PNN) is upregulated around the phrenic motor neurons. Digestion of these potently inhibitory extracellular matrix molecules with chondroitinase ABC (denoted ChABC) could, by itself, promote the plasticity of tracts that were spared and restore limited activity to the paralysed diaphragm. However, when combined with a peripheral nerve autograft, ChABC treatment resulted in lengthy regeneration of serotonin-containing axons and other bulbospinal fibres and remarkable recovery of diaphragmatic function. After recovery and initial transection of the graft bridge, there was an unusual, overall increase in tonic electromyographic activity of the diaphragm, suggesting that considerable remodelling of the spinal cord circuitry occurs after regeneration. This increase was followed by complete elimination of the restored activity, proving that regeneration is crucial for the return of function. Overall, these experiments present a way to markedly restore the function of a single muscle after debilitating trauma to the central nervous system, through both promoting the plasticity of spared tracts and regenerating essential pathways.  相似文献   

6.
7.
8.
9.
K J Kotrla  C S Goodman 《Nature》1984,311(5982):151-153
During development, neurones find and interconnect with their targets in a remarkably precise way. The unfolding of neuronal specificity involves a series of highly specific recognition events which are likely to be coordinated by the spatial and temporal expression of many different surface molecules. At early stages of development, neuronal recognition occurs most dramatically at the tips of growing axons, at growth cones and their filopodia. Previous studies on the grasshopper embryo suggest that specific filopodial contacts lead to the stereotyped patterns of selective axonal fasciculation; these results support the 'labelled pathways' hypothesis which predicts that the different neighbouring axon fascicles in the embryonic neuropil within filopodial grasp are differentially labelled. To uncover the molecular labels on fasciculating embryonic axons, we screened 2,000 monoclonal antibodies generated against the embryonic neuroepithelium. Here we describe three antibodies which reveal surface antigens whose temporal and spatial expression during embryogenesis correlate with the predictions of the model. In particular, the Mes-2 antibody recognizes an antigen which is transiently expressed on the surface of only 4 out of approximately 1,000 neurones in each metathoracic hemisegment during a short period of embryogenesis. The growth cones of two of these neurones fasciculate in the periphery and innervate the same target. Moreover, they transiently express the Mes-2 surface antigen while doing so.  相似文献   

10.
Suh GS  Wong AM  Hergarden AC  Wang JW  Simon AF  Benzer S  Axel R  Anderson DJ 《Nature》2004,431(7010):854-859
All animals exhibit innate behaviours in response to specific sensory stimuli that are likely to result from the activation of developmentally programmed neural circuits. Here we observe that Drosophila exhibit robust avoidance to odours released by stressed flies. Gas chromatography and mass spectrometry identifies one component of this 'Drosophila stress odorant (dSO)' as CO2. CO2 elicits avoidance behaviour, at levels as low as 0.1%. We used two-photon imaging with the Ca2+-sensitive fluorescent protein G-CaMP to map the primary sensory neurons governing avoidance to CO2. CO2 activates only a single glomerulus in the antennal lobe, the V glomerulus; moreover, this glomerulus is not activated by any of 26 other odorants tested. Inhibition of synaptic transmission in sensory neurons that innervate the V glomerulus, using a temperature-sensitive Shibire gene (Shi(ts)), blocks the avoidance response to CO2. Inhibition of synaptic release in the vast majority of other olfactory receptor neurons has no effect on this behaviour. These data demonstrate that the activation of a single population of sensory neurons innervating one glomerulus is responsible for an innate avoidance behaviour in Drosophila.  相似文献   

11.
Deletion of steroid 5 alpha-reductase 2 gene in male pseudohermaphroditism   总被引:17,自引:0,他引:17  
S Andersson  D M Berman  E P Jenkins  D W Russell 《Nature》1991,354(6349):159-161
The conversion of testosterone into dihydrotestosterone by steroid 5 alpha-reductase is a key reaction in androgen action, and is essential both for the formation of the male phenotype during embryogenesis and for androgen-mediated growth of tissues such as the prostate. Single gene defects that impair this conversion lead to pseudohermaphroditism in which 46X,Y males have male internal urogenital tracts, but female external genitalia. We have described the isolation of a human 5 alpha-reductase complementary DNA from prostate. Subsequent cloning and genetic studies showed that this gene (designated 5 alpha-reductase 1) was normal in patients with 5 alpha-reductase deficiency. We report here the isolation of a second 5 alpha-reductase cDNA by expression cloning and the polymerase chain reaction. The biochemical and pharmacological properties of this cDNA-encoded enzyme (designated 5 alpha-reductase 2) are consistent with it being the major isozyme in genital tissue. A deletion in this gene is present in two related individuals with male pseudohermaphroditism caused by 5 alpha-reductase deficiency. These results verify the existence of at least two 5 alpha-reductases in man and provide insight into a fundamental hormone-mediated event in male sexual differentiation.  相似文献   

12.
J S Eisen  P Z Myers  M Westerfield 《Nature》1986,320(6059):269-271
How is the adult pattern of connections between motoneurones and the muscles that they innervate established during vertebrate development? Populations of motoneurones are thought to follow one of two patterns of development: (1) motor axons initially follow stereotyped pathways and project to appropriate regions of the developing muscle or (2) motor axons initially project to some regions that are incorrect, the inappropriate projections being eliminated subsequently. Here we observed individually identified motoneurones in live zebra fish embryos as they formed growth cones and as their growth cones navigated towards their targets. We report that from axogenesis, each motor axon followed a stereotyped pathway and projected only to the specific region of the muscle appropriate for its adult function. In addition, the peripheral arbor established by each motoneurone was restricted to a stereotyped region of its own segment and did not overlap with the peripheral arbor of the other motoneurones in that segment. We conclude that the highly stereotyped pattern of innervation seen in the adult is due to initial selection of the appropriate pathway, rather than elimination of incorrect projections.  相似文献   

13.
Höner OP  Wachter B  East ML  Streich WJ  Wilhelm K  Burke T  Hofer H 《Nature》2007,448(7155):798-801
Dispersal has a significant impact on lifetime reproductive success, and is often more prevalent in one sex than the other. In group-living mammals, dispersal is normally male-biased and in theory this sexual bias could be a response by males to female mate preferences, competition for access to females or resources, or the result of males avoiding inbreeding. There is a lack of studies on social mammals that simultaneously assess these factors and measure the fitness consequences of male dispersal decisions. Here we show that male-biased dispersal in the spotted hyaena (Crocuta crocuta) most probably results from an adaptive response by males to simple female mate-choice rules that have evolved to avoid inbreeding. Microsatellite profiling revealed that females preferred sires that were born into or immigrated into the female's group after the female was born. Furthermore, young females preferred short-tenured sires and older females preferred longer-tenured sires. Males responded to these female mate preferences by initiating their reproductive careers in groups containing the highest number of young females. As a consequence, 11% of males started their reproductive career in their natal group and 89% of males dispersed. Males that started reproduction in groups containing the highest number of young females had a higher long-term reproductive success than males that did not. The female mate-choice rules ensured that females effectively avoided inbreeding without the need to discriminate directly against close kin or males born in their own group, or to favour immigrant males. The extent of male dispersal as a response to such female mate preferences depends on the demographic structure of breeding groups, rather than the genetic relatedness between females and males.  相似文献   

14.
Shin MK  Levorse JM  Ingram RS  Tilghman SM 《Nature》1999,402(6761):496-501
Endothelin receptor B (EDNRB) is a G-protein-coupled receptor with seven transmembrane domains which is required for the development of melanocytes and enteric neurons. Mice that are homozygous for a null mutation in the Ednrb gene are almost completely white and die as juveniles from megacolon. To determine when EDNRB signalling is required during embryogenesis, we have exploited the tetracycline-inducible system to generate strains of mice in which the endogenous Ednrb locus is under the control of the tetracycline-dependant transactivators tTa or rtTA. By using this system to express Ednrb at different stages of embryogenesis, we have determined that EDNRB is required during a restricted period of neural crest development between embryonic days 10 and 12.5. Moreover, our results imply that EDNRB is required for the migration of both melanoblasts and enteric neuroblasts.  相似文献   

15.
A M Davies 《Nature》1989,337(6207):553-555
Target field innervation in the developing vertebrate nervous system coincides with the onset of important trophic interactions. Two factors that determine the timing of this event are the distance axons have to grow to reach their targets, which are known to vary, and the rate at which they grow. There have been few studies of axonal growth rate at this stage of development and no comparative study of the relationship between growth rate and target distance. Embryonic chick cranial sensory neurons are located in discrete ganglia and the distance axons have to grow to reach their targets is different for each ganglion, ranging from several hundred to several thousand microns. Here, I show that these neurons differ in their in vivo growth rates; neurons with more distant targets growing faster. In vitro, single isolated neurons from each of these populations grow at a similar rate to that observed in vivo, indicating that growth rate is an intrinsically determined property of neurons before they reach their targets.  相似文献   

16.
取16例24~32周龄的死亡人胎作材料,用免疫细胞化学方法,于光镜下观察到颈上神经节(简称颈上节)和星状神经节(简称星状节)中存在含血管活性肠肽(VIP)神经元和纤维,含生长抑素(SOM)神经元和纤雏以及含P物质(SP)纤维,但未发现含SP神经元。二节中的含VIP神经元和含SOM神经元形状多种,免疫反应染色深浅不等,颈上节以大、中型细胞为主,而星状节以中、小型细胞居多。上述神经元类型和分布未有明显的胎龄变化。结果揭示颈交感神经节中,含VIP和含SOM神经元在出生前已经发育。VIP、SOM和SP3种神经肽在胎儿期已作为神经传导物或神经调节物而发挥功能。  相似文献   

17.
利用显微观察并描述了直翅目网翅蝗科雏蝗属青藏雏蝗Chorthippus qingzangensis、小翅雏蝗C.fallax、东方雏蝗C.intermedius、红胫雏蝗C.rufitibis、白纹雏蝗C.albonemus共五种雏蝗雄性外生殖器的形态特征。结果表明:五种雏蝗雄性外生殖器发生变化最为明显的部位是冠突、前突、侧板、桥和色带连片及阳茎基瓣,在种间存在明显差异。通过对雄性外生殖器的形态结构比较,在探讨蝗总科分类和系统发育上均具有重要意义,并为雏蝗属种类鉴定提供了新的分类依据。  相似文献   

18.
Kreitzer AC  Malenka RC 《Nature》2007,445(7128):643-647
The striatum is a major forebrain nucleus that integrates cortical and thalamic afferents and forms the input nucleus of the basal ganglia. Striatal projection neurons target the substantia nigra pars reticulata (direct pathway) or the lateral globus pallidus (indirect pathway). Imbalances between neural activity in these two pathways have been proposed to underlie the profound motor deficits observed in Parkinson's disease and Huntington's disease. However, little is known about differences in cellular and synaptic properties in these circuits. Indeed, current hypotheses suggest that these cells express similar forms of synaptic plasticity. Here we show that excitatory synapses onto indirect-pathway medium spiny neurons (MSNs) exhibit higher release probability and larger N-methyl-d-aspartate receptor currents than direct-pathway synapses. Moreover, indirect-pathway MSNs selectively express endocannabinoid-mediated long-term depression (eCB-LTD), which requires dopamine D2 receptor activation. In models of Parkinson's disease, indirect-pathway eCB-LTD is absent but is rescued by a D2 receptor agonist or inhibitors of endocannabinoid degradation. Administration of these drugs together in vivo reduces parkinsonian motor deficits, suggesting that endocannabinoid-mediated depression of indirect-pathway synapses has a critical role in the control of movement. These findings have implications for understanding the normal functions of the basal ganglia, and also suggest approaches for the development of therapeutic drugs for the treatment of striatal-based brain disorders.  相似文献   

19.
Ghosh S  Larson SD  Hefzi H  Marnoy Z  Cutforth T  Dokka K  Baldwin KK 《Nature》2011,472(7342):217-220
Sensory information may be represented in the brain by stereotyped mapping of axonal inputs or by patterning that varies between individuals. In olfaction, a stereotyped map is evident in the first sensory processing centre, the olfactory bulb (OB), where different odours elicit activity in unique combinatorial patterns of spatially invariant glomeruli. Activation of each glomerulus is relayed to higher cortical processing centres by a set of ~20-50 'homotypic' mitral and tufted (MT) neurons. In the cortex, target neurons integrate information from multiple glomeruli to detect distinct features of chemically diverse odours. How this is accomplished remains unclear, perhaps because the cortical mapping of glomerular information by individual MT neurons has not been described. Here we use new viral tracing and three-dimensional brain reconstruction methods to compare the cortical projections of defined sets of MT neurons. We show that the gross-scale organization of the OB is preserved in the patterns of axonal projections to one processing centre yet reordered in another, suggesting that distinct coding strategies may operate in different targets. However, at the level of individual neurons neither glomerular order nor stereotypy is preserved in either region. Rather, homotypic MT neurons from the same glomerulus innervate broad regions that differ between individuals. Strikingly, even in the same animal, MT neurons exhibit extensive diversity in wiring; axons of homotypic MT pairs diverge from each other, emit primary branches at distinct locations and 70-90% of branches of homotypic and heterotypic pairs are non-overlapping. This pronounced reorganization of sensory maps in the cortex offers an anatomic substrate for expanded combinatorial integration of information from spatially distinct glomeruli and predicts an unanticipated role for diversification of otherwise similar output neurons.  相似文献   

20.
p63 is a p53 homologue required for limb and epidermal morphogenesis   总被引:100,自引:0,他引:100  
Mills AA  Zheng B  Wang XJ  Vogel H  Roop DR  Bradley A 《Nature》1999,398(6729):708-713
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号