共查询到20条相似文献,搜索用时 15 毫秒
1.
关于具有限时滞Liénard方程周期解的存在性 总被引:1,自引:1,他引:1
<正>关于具有限时滞的Liénard方程x(t)+f(x(t))x(t)+g(x(t-r))=0 (0.1)的周期解的存在性的研究已有很多,但多数对g(x)都假设x∈R\{0}时X·g(x)>0.该条件对某些实际背景很强的方程是不成立的.如向日葵方程a(t)+(a/r)a(t)+(b/r)sina(t-r)=0就不满足上述条件.关于方程(0.1)的周期解的研究可参阅文献[2~4]及其参考文献.本文的目的在于以滞量r为参数,在减弱条件x·g(x)>0的基础上,给出保证方程(0.1)存在非平凡周期解的充分条件. 相似文献
2.
3.
人们已对Hamilton系统进行了广泛而深入的研究.主要成果集中在刻划周期解的存在性,见文献[1]及引文.近年来,Rabinowitz,Hofer等数学家进一步研究了Hamilton系统的同宿轨和异宿轨的存在性.就纯量Hamilton系统,即Duffing方程而言,人们还研究了Birkhoff型周期解的存在性和解的有界性及浑沌现象等动力行为.但是对一般Hamilton系统周期解的性态知道甚少,原因之一是目前研究Hamilton系统行之有效的方法:如临界点理论,拓扑度理论难以刻划解的性态.本文引进分量Lyapunov函数,结合临界点理论研究了如下Hamilton系统(?)-Ax (?)G(x)=p(t),(1)其中A是n阶正定实对称矩阵,G∈C~2(R~n,R~n),p(t)是连续的2π-周期向量函数,(?)G表示G的梯度.我们得到了 相似文献
4.
5.
6.
关于具有限时滞的Liénard方程x(t) f(x(t))x(t) g(x(t-r))=0 (0.1)的周期解的存在性的研究已有很多,但多数对g(x)都假设x∈R\{0}时X·g(x)>0.该条件对某些实际背景很强的方程是不成立的.如向日葵方程a(t) (a/r)a(t) (b/r)sina(t-r)=0就不满足上述条件.关于方程(0.1)的周期解的研究可参阅文献[2~4]及其参考文献.本文的目的在于以滞量r为参数,在减弱条件x·g(x)>0的基础上,给出保证方程(0.1)存在非平凡周期解的充分条件1 零解的稳定性及Hopf分支对方程(0.l),假设r>0为常数f,g∈C~2且g(0)=0.记f(0)=m,g’(0)=n,且设m>0,n>0.令x=y,则方程(0.1)化成等价系统 相似文献
7.
本文考虑下面Cauchy问题: 这里m>1,n>1,p≥1,m>p,我们总是考虑具有紧支集的u_o≥0,u_o∈L~∞(R~m),于是(1)式对应的定常问题为本文假设a(r)满足下面条件: (A 1)a(r)∈C~1([0,∞))且a′(r)>0,对r∈(0,∞); (A 2)存在a>0,使得(r-a)a(r)≥o,对r∈[0,∞)。在实际应用中,问题(1)—(2)描述了一生物动力学模型。问题(1)及相应的Dirichlet初边值问题的解的存在性在文献[3]中得到。在文献[4]中证明了(2)的非平凡解的唯一性,为 相似文献
8.
广义具导数项 Ginzburg-Landau(G-L)方程出现于许多非线性的物理现象: Rayleigh-Be-nard对流、流体力学中的 Taylor-Couette流、等离子体中的漂移耗散波、化学反应中的湍流等. 相似文献
9.
具有限时滞中立型泛函微分方程周期解 总被引:3,自引:0,他引:3
讨论了具有有限时滞中立型泛函微分方程周期解的存在性,证明了解的等度最终有界性蕴含了周期解的存在性,去掉了解的一致有界性条件,推广了已有结果,其中包括著名的Yoshizawa周期解定理。 相似文献
10.
设F(t,x),G(t,x)满足下面的对称性条件:F(—t,—x)=F(t,x),G(—t,—x)=G(t,x)。(3) 由于F(t,x)和G(t,x)均为x的周期函数,系统(2)可以看作柱面上的非自治系统,当F(t,x)=0时,方程(2)为保守系统,当F(t,x)(?)0时,(2)式不再是保守系统。这不同于文献[1],从而Moser的扭转定理不再适用。 相似文献
11.
12.
关于微分方程x(?) g(x)=p(t)=p(t 2π),(1)讨论其周期解的文献已经很多,在g(x)满足强非线性,亚线性以及避开共振点条件下均已讨论过其周期解的存在性问题(参见丁同仁及葛渭高教授等近几年发表的论文),相对来说,对于时滞Duffing型方程这方面的研究还比较少.1981年,文献[2]在类似避开共振点条件下,证明了如下具有时滞的Duffing方程 相似文献
13.
一、引言对于Duffing方程+c+x+βx~3=P(t),(1)这里c及β是正常数,p(t)是周期为T的周期连续函数,并且是奇调和的。max|p(t)|=1,令 相似文献
14.
15.
可压缩的Navier-Stokes方程解的存在性 总被引:1,自引:0,他引:1
本文考虑如下形式的n维可压缩流体的Navier-Stokes方程(n≥2): (?)_tρ+sum from j=1 to n((?)_j(ρu_j))=0, (?)_tu_i-sum from j=1 to n(ρ~(-1)[μ(?)_j((?)_ju_j+(?)_iu_j)+μ′(?)_i(?)_ju_j])=-sum from j=1 to n(u_j(?)_ju_i-ρ~(-1)(?)_iP(ρ),(1) ρ|_(t=0)=(?)+(?)_0(x),u|_(t=0)=u_0(x),其中t≥0,x=(x_1,…,x_n),ρ为密度,u=(u_1,…,u_n)为速度,μ,μ′为粘性系数,P(ρ)为压力,为一常数,用|·|_s表示Sobolev空间范数。有如下结论: 相似文献
16.
Ponizovski(?)在文献[1]中提出下面的问题:问题 什么样的半群环是有单位元的环?李方在文献[2]中研究了纯正半群环的情形,本文考虑周期半群环的情形,将周期半群环的单位元存在性问题归结到幂等元生成的子半群环的单位元存在性问题,符号同文献[2].本文的主要结果如下:定理 设S是周期半群.则RS含单位元当且仅当R含单位元,且存在E(S)的一个有限子集U,使得S=SU=US,在此条件下,有I_(RS)=I_R.此定理的证明难点在于下面的引理的证明.引理 设S是周期半群.若RS含单位元,则R含单位元.引理的证明大意:假设集合A={T:T是周期半群,RT含单位元,但R〈E(T)〉不 相似文献
17.
18.
完备弹性的台球在球桌上的运动是一个高度典型的动力系统.假定Γ是台球桌子的边界,严格凸并且C~1光滑.假定球在桌子上滚动,沿直线前进,当它撞到边界Γ时按“入射角等于反射角”的规则反弹,然后继续直行、反弹…….如果台球反弹n次(至少n次)后回到出发点,并沿原来的方向继续前进,这便是一个以n为最小周期的周期运动,其轨迹是Γ的内接n边形(无重合边),且在每个顶点处入射角与反射角相等.这就叫做n反弹的周期轨道.如果一个n反弹的周期轨道环行Γk圈(确切含义见文献[1,2]),就被称为是Birkhoff(n,k)型的周期轨道.本文研究周期轨道问题,特别是研究对于任给的整数n>1,究竟有多少n反弹的周期轨道.1927年Birkhoff研究过这个问题,他得到一个n反弹的周期轨道的存在性,此外还叙述了下面的结果:对于n>1,记 相似文献
19.
Burgers-KdV方程的一类解析解 总被引:18,自引:1,他引:18
近十几年来,人们在研究含气泡的液体流动以及弹性管道中的液体流动等问题时,相继提出了Burgers—KdV方程(下称B-KdV方程): 相似文献
20.
本文研究二阶中立型泛函微分方程■的非振动解的存在性。其中C_i(t),P_i(t)∈C(t_0,∞),R~+),τ_i(t),g_i(t)∈C([t_0,∞),R)且满足 在更一般情形下本文得到 相似文献