首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Polyamines are aliphatic cations with multiple functions and are essential for life. Cellular polyamine levels are regulated by multiple pathways such as synthesis from amino acid precursors, cellular uptake mechanisms that salvage polyamines from diet and intestinal microorganisms, as well as stepwise degradation and efflux. Investigations using polyamine biosynthetic inhibitors indicate that alterations in cellular polyamine levels modulate normal and cancer cell growth. Studies using transgenic mice overexpressing polyamine biosynthetic enzymes support a role of polyamines in carcinogenesis. Many, if not all, signal transduction pathways intersect with polyamine biosynthetic pathways and the regulation of intracellular polyamine levels. Direct binding of polyamines to DNA and their ability to modulate DNA-protein interactions appear to be important in the molecular mechanisms of polyamine action in cell proliferation. Consistent with the role of polyamines as facilitators of cell growth, several studies have shown their ability to protect cells from apoptosis. However, polyamines also have a role in facilitating cell death. The basis of these diverse cellular responses is currently not known. Cell death response might be partly mediated by the production of hydrogen peroxide during polyamine catabolism. In addition, the ability of polyamines to alter DNA-protein and protein-protein interactions might be disruptive to cellular functions, when abnormally high levels are accumulated due to defects in polyamine catabolic or efflux pathways. A large body of data indicates that polyamine pathway can be a molecular target for therapeutic intervention in several types cancers. Inhibitors of biosynthesis, polyamine analogues as well as oligonucleotide/polyamine analogue combinations are promising drug candidates for chemoprevention and/or treatment of cancer.  相似文献   

2.
DNA replication stress, an important source of genomic instability, arises upon different types of DNA replication perturbations, including those that stall replication fork progression. Inhibitors of the cellular pool of deoxynucleotide triphosphates (dNTPs) slow down DNA synthesis throughout the genome. Following depletion of dNTPs, the highly conserved replication checkpoint kinase pathway, also known as the S-phase checkpoint, preserves the functionality and structure of stalled DNA replication forks and prevents chromosome fragmentation. The underlying mechanisms involve pathways extrinsic to replication forks, such as those involving regulation of the ribonucleotide reductase activity, the temporal program of origin firing, and cell cycle transitions. In addition, the S-phase checkpoint modulates the function of replisome components to promote replication integrity. This review summarizes the various functions of the replication checkpoint in promoting replication fork stability and genome integrity in the face of replication stress caused by dNTP depletion.  相似文献   

3.
-Phenylethyl isothiocyanate (PEITC) is a promising chemoprotective compound that is routinely consumed in the diet as its glucosinolate precursor. Previous studies have shown that PEITC can inhibit phase I enzymes and induce phase II detoxification enzymes along with apoptosis in vitro. The detailed mechanisms involved in the apoptotic cascade, however, have not been elucidated. In the present study, we demonstrate that PEITC can induce apoptosis in hepatoma HepG2 cells in a concentration- and time-dependant manner as determined by TUNEL positive and SubG1 population analysis. Caspase-3-like activity and poly(ADP-ribosyl)polymerase cleavage increased during treatment with 20 µM PEITC; high concentrations, however, induced necrosis. Pre-treatment with Z-VAD-FMK and the caspase-3-specific inhibitor Ac-DEVD-CHO prevented PEITC-induced apoptosis, as determined by caspase-3-like activity and DNA fragmentation. Additional investigations also showed that at concentrations of 5-C10 µM PEITC, DNA synthesis was inhibited and G2/M phase cell cycle arrest occurred, correlating with an alteration in cyclin B1 and p34cdc2 protein levels. Furthermore, we also demonstrate a concentration- and time-dependant burst of superoxide (O2-) in PEITC-treated cells. However, pre- and co-treatment with the free radical scavengers Trolox, ascorbate, mannitol, uric acid and the superoxide mimetic manganese (III) tetrakis (N-methyl-2-pyridyl) porphyrin failed to prevent PEITC-mediated apoptosis. Taken together, these results suggest that PEITC potently induces apoptosis and cell cycle arrest in HepG2 cells and that the generation of reactive oxygen species appears to be a secondary effect.Received 23 December 2002; accepted 22 April 2003  相似文献   

4.
Sickle cell anemia (SS) patients can be divided into two sub-populations according to peripheral HbF levels. Patients with low (<9%) HbF levels (LFSS) are characterized by an increased number of circulating BFU-E in active DNA synthesis, and release of burst promoting activity (BPA) by unstimulated low density (LD) adherent cells. In contrast, circulating BFU-E from SS patients with high (>9%) HbF levels (HFSS) are normal in number, largely in resting phase, and their LD cells do not release BPA-like activity.More recently further heterogeneity has been found among these two groups. In LFSS patients GM-CSF is constitutively produced by unstimulated monocytes. In contrast, HFSS patients' adherent cell depletion increases cycling of BFU-E in culture. CM from HFSS patients inhibits BFU-E expression in culture. Hence, LD adherent cells from HFSS patients may release an inhibitory factor(s). The nature of this factor has to be determined.In addition, there are distinct subpopulations of BFU-E responsiveness to growth factor (GM-CSF, IL-3): a) LFSS patients have a homogeneous BFU-E population, equally responsive to GM-CSF and IL-3; b) HFSS patients, in addition to this subpopulation, have a subset of BFU-E dependent exclusively on IL-3 which is 20 to 40% of the total number of circulating BFU-E. This is similar to BFU-E from normal individuals. Hence, LFSS BFU-E represent an actively proliferating population, equally responsive to GM-CSF and IL-3, controlled by at least constitutively produced GM-CSF and possibly other factors.These observations suggest a significant modification in BFU-E behavior in the subset of SS patients with low HbF levels and high hemopoietic stress. The heterogenous regulation of BFU-E in SS disease seems to be an epiphenomenon of HbF levels, and not vice-versa.  相似文献   

5.
Detection of stereotypic hallmarks of apoptosis during cell death induced by menadione, including DNA laddering and the formation of apoptotic bodies, is reported. Comet assay and the TdT-mediated dUTP nick end labelling (TUNEL) procedure were also performed to detect DNA fragmentation. Inhibition of DNA fragmentation by Ac-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO) and phenylmethylsulfosyl (PMSF) implicated the involvement of caspase-like proteases in menadione-induced apoptosis in plants. We further studied the cleavage of lamin-like proteins during apoptosis in menadione-treated tobacco protoplasts. In animals, it has been reported that the solubilization of nuclear lamina and lamin degradation occurs during apoptotic cell death. However, little is known about the fate of lamins in apoptotic plant cells. Our study provided evidence that lamin-like proteins degraded into 35-kDa fragments in tobacco protoplasts induced by menadione, and this preceded DNA fragmentation. The results thus indicated that proteolytic cleavage of nuclear lamins was also conserved in programmed cell death in plants. Received 16 November 1998; received after revision 21 December 1998; accepted 23 December 1998  相似文献   

6.
MDA-MB-468 is a human mammary adenocarcinoma cell line that overexpresses the epidermal growth factor (EGF) receptor and undergoes programmed cell death (apoptosis) in response to EGF treatment. Programmed cell death was shown to be greatly enhanced when cells were growth-arrested prior to EGF treatment. Apoptosis was characterized by an initial rounding up and detachment of the cells from their substrate starting about 12 h after EGF treatment, followed by chromatin condensation, nuclear fragmentation and oligonucleosomal fragmentation of the DNA at about 24 to 48 h. Cell death was dependent on de novo protein synthesis. We found a rapid induction of c-fos, c-jun and junB at the mRNA level after about 30 min of EGF treatment and a more delayed upregulation of fosB and fra-1. The junD gene was expressed in the absence of EGF, and it was moderately induced within 30 min of growth factor addition. The increase of the different fos and jun mRNAs were paralleled by an increase of activator protein-1 (AP-1) DNA binding activity. A characterization of the AP-1 complex revealed similar levels of several Fos and Jun proteins. Based on the kinetics of AP-1 accumulation and cell death, it seems likely that AP-1 contributes to the apoptotic cell death of EGF receptor-overexpressing MDA-MB-468 cells. Received 21 July 1997; received after revision 6 November 1997; accepted 6 November 1997  相似文献   

7.
Muscle satellite cells are believed to form a stable, self-renewing pool of stem cells in adult muscle where they function in tissue growth and repair. A regulatory disruption of growth and differentiation of these cells is assumed to result in tumor formation. Here we provide for the first time evidence that sonic hedgehog (Shh) regulates the cell fate of adult muscle satellite cells in mammals. Shh promotes cell division of satellite cells (and of the related model C2C12 cells) and prevents their differentiation into multinucleated myotubes. In addition, Shh inhibits caspase-3 activation and apoptosis induced by serum deprivation. These effects of Shh are reversed by simultaneous administration of cyclopamine, a specific inhibitor of the Shh pathway. Taken together, Shh acts as a proliferation and survival factor of satellite cells in the adult muscle. Our results support the hypothesis of the rhabdomyosarcoma origin from satellite cells and suggest a role for Shh in this process.Received 23 February 2005; received after revision 2 May 2005; accepted 9 June 2005  相似文献   

8.
MicroRNAs (miRNAs) are short ~21-nt non-coding RNA molecules that have been shown to regulate a number of biological processes. Previous reports have shown that overexpression of miR-128 in glioma cells inhibited cell proliferation. Literature also suggests that miR-128 negatively regulates prostate cancer cell invasion. Here, we show that overexpression of hsa-miR-128, a brain-enriched microRNA, induces apoptosis in HEK293T cells as elucidated by apoptosis assay, cell cycle changes, loss of mitochondrial membrane potential and multicaspase assay. By in silico analysis, we identified a putative target site within the 3′ untranslated region (UTR) of Bax, a proapoptotic member of the apoptosis pathway. We found that ectopic expression of hsa-miR-128 suppressed a luciferase reporter containing the Bax-3′ UTR and reduced the levels of Bax in HEK293T cells. Taken together, our study demonstrates that overexpression of hsa-miR-128 not only induces apoptosis in HEK293T cells but also is an endogenous regulator of Bax protein.  相似文献   

9.
In several cases of apoptotic death the large ribosomal subunit 28S rRNA is specifically cleaved. The cleavages appear at specific sites within those domains of the rRNA molecule that have shown exceptional high divergence in evolution (D domains). The cleavages accompany rather than precede apoptosis, and there is a positive, but not complete, correlation between rRNA cleavage and internucleosomal DNa fragmentation. Most cell types studied so far show two alternative cleavage pathways that are mutually exclusive. Cleavage can either start in the D8 domain with secondary cuts within a subdomain of D2 (D2c), or in the D2 domain with subsequent excision of the D2c subdomain. The latter pathway is of particular interest since D2 (unlike D8) is normally inaccessible for RNase attack. That apoptosis specifically affects the ribosomal divergent domains suggests that these domains, which make up roughly 25% of total cellular RNA, might have evolved to serve functions related to apoptosis. Future studies will be directed to test the hypothesis that rRNA fragmentation may be part of an apoptotic program directed against the elimination of illegitimate (viral?) polynucleotides.  相似文献   

10.
11.
Mitochondria are dynamic organelles that supply energy required to drive key cellular processes, such as survival, proliferation, and migration. Critical to all of these processes are changes in mitochondrial architecture, a mechanical mechanism encompassing both fusion and fragmentation (fission) of the mitochondrial network. Changes to mitochondrial shape, size, and localization occur in a regulated manner to maintain energy and metabolic homeostasis, while deregulation of mitochondrial dynamics is associated with the onset of metabolic dysfunction and disease. In cancers, oncogenic signals that drive excessive proliferation, increase intracellular stress, and limit nutrient supply are all able to alter the bioenergetic and biosynthetic requirements of cancer cells. Consequently, mitochondrial function and shape rapidly adapt to these hostile conditions to support cancer cell proliferation and evade activation of cell death programs. In this review, we will discuss the molecular mechanisms governing mitochondrial dynamics and integrate recent insights into how changes in mitochondrial shape affect cellular migration, differentiation, apoptosis, and opportunities for the development of novel targeted cancer therapies.  相似文献   

12.
G418 is used extensively in transfection experiments to select eukaryotic cells that have acquired neomycin resistance genes, but the mechanism is still elusive. To investigate this, we treated normal rat kidney cells with G418 for 3 days and found that the cells presented typical apoptotic features such as cell shrinkage, nuclear fragmentation, and caspase-3 activation. However, there was no low-molecular DNA ladder. The pan caspase inhibitor z-VAD-fmk completely inhibited this type of apoptosis, suggesting a caspase-dependent mechanism. Caspase cascades in apoptosis induced by G418 were initiated by at least two pathways: the release of cytochrome c from mitochondria, which was observed under confocal microscopy, and endoplasmic reticulum stress, demonstrated by the increase in Ca2+ concentration and the cleavage of m-calpain and procaspase-12. Both pathways activated caspase-9. Inhibition of caspase-9 activity by z-LEHD-fmk prevented most of the cells from apoptosis, and E-64d, an inhibitor of calpain accentuated this block. The cleavage of casapse-9 and caspase-12 was blocked only by simultaneous application of z-VAD-fmk and E-64d, but not by either alone. E-64d did not prevent the release of cytochrome c. These results indicated that these two pathways were independent of each other. Received 1 April 2004; received after revision 21 April 2004; accepted 26 May 2004  相似文献   

13.
Indole-3-carbinol (I3C) has been found to act against several types of cancer, while ultraviolet B (UVB) is known to induce the apoptosis of human melanoma cells. Here, we investigated whether I3C can sensitize G361 human melanoma cells to UVB-induced apoptosis. We examined the effects of combined I3C and UVB (I3C/UVB) at various dosages. I3C (200 μM)/UVB (50 mJ/cm2) synergistically reduced melanoma cell viability, whereas I3C (200 μM) or UVB (50 mJ/cm2), separately, had little effect on cell viability. DNA fragmentation assays indicated that I3C/UVB induced apoptosis. Further results show that I3C/UVB activates caspase-8, −3, and Bid and causes the cleavage of poly(ADP-ribose) polymerase. Moreover, I3C decreased the expression of the anti-apoptotic protein, Bcl-2, whereas UVB increased the translocation of Bax to mitochondria. Thus, an increased Bax/Bcl-2 ratio by I3C/UVB may result in melanoma apoptosis. In conclusion, our study demonstrated that I3C sensitizes human melanoma cells by down-regulating Bcl-2. Received 5 July 2006; received after revision 25 August 2006; accepted 11 September 2006  相似文献   

14.
In mouse embryonic stem (mES) cells, the expression of p27 is elevated when differentiation is induced. Using mES cells lacking p27 we tested the importance of p27 for the regulation of three critical cellular processes: proliferation, differentiation, and apoptosis. Although cell cycle distribution, DNA synthesis, and the activity of key G1/S-regulating cyclin-dependent kinases remained unaltered in p27-deficient ES cells during retinoic acid-induced differentiation, the amounts of cyclin D2 and D3 in such cells were much lower compared with normal mES cells. The onset of differentiation induces apoptosis in p27-deficient cells, the extent of which can be reduced by artificially increasing the level of cyclin D3. We suggest that the role of p27 in at least some differentiation pathways of mES cells is to prevent apoptosis, and that it is not involved in slowing cell cycle progression. We also propose that the pro-survival function of p27 is realized via regulation of metabolism of D-type cyclin(s).Received 25 February 2004; received after revision 5 April 2004; accepted 15 April 2004  相似文献   

15.
16.
Following injection of bone marrow cells in lethally irradiated mice, previously infected with BCG regenerating hemopoietic cell populations differentiate along the leucocyte pathway to the detriment of erythroid lineage. Such a phenomenon persisting even if anemia of infected mice is increased by bleeding just before irradiation and reconstitution supports the hypothesis of preferential differentiation of stem cells.  相似文献   

17.
To characterize neuronal death, primary cortical neurons (C57/Black 6 J mice) were exposed to hydrogen peroxide (H2O2) and staurosporine. Both caused cell shrinkage, nuclear condensation, DNA fragmentation and loss of plasma membrane integrity. Neither treatment induced caspase-7 activity, but caspase-3 was activated by staurosporine but not H2O2. Each treatment caused redistribution from mitochondria of both endonuclease G (Endo G) and cytochrome c. Neurons knocked down for Endo G expression using siRNA showed reduction in both nuclear condensation and DNA fragmentation after treatment with H2O2, but not staurosporine. Endo G suppression protected cells against H2O2-induced cell death, while staurosporine-induced death was merely delayed. We conclude that staurosporine induces apoptosis in these neurons, but severe oxidative stress leads to Endo G-dependent death, in the absence of caspase activation (programmed cell death-type III). Therefore, oxidative stress triggers in neurons a form of necrosis that is a systematic cellular response subject to molecular regulation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Statins may exert beneficial effects on Alzheimer’s disease (AD) patients. Based on the antineoplastic and apoptotic effects of statins in a number of cell types, we hypothesized that statins may be able to protect neurons by controlling the regulation of cell cycle and/or apoptosis. A growing body of evidence indicates that neurodegeneration involves the cell-cycle activation in postmitotic neurons. Failure of cell-cycle control is not restricted to neurons in AD patients, but occurs in peripheral cells as well. For these reasons, we studied the role of simvastatin (SIM) on cell survival/death in lymphoblasts from AD patients. We report here that SIM induces apoptosis in AD lymphoblasts deprived of serum. SIM interacts with PI3K/Akt and ERK1/2 signaling pathways thereby decreasing the serum withdrawal-enhanced levels of the CDK inhibitor p21Cip1 (p21) and restoring the vulnerability of AD cells to trophic factor deprivation.  相似文献   

19.
Throughout growth and development,Dictyostelium cells secrete autocrine factors that accumulate in proportion to cell density. At sufficient concentration, these factors cause changes in gene expression. VegetativeDictyostelium cells continuously secrete prestarvation factor (PSF). The bacteria upon which the cells feed inhibit their response to PSF, allowing the cells to monitor their own density in relation to that of their food supply. At high PSF/bacteria ratios, which occur during late exponential growth, PSF induces the expression of several genes whose products are needed for cell aggregation. When the food supply has been depleted, PSF production declines, and a second density-sensing pathway is activated. Starving cells secrete conditioned medium factor (CMF), a glycoprotein of Mr 80 kDa that is essential for the development of differentiated cell types. Antisense mutagenesis has shown that cells lacking CMF cannot aggregate, and preliminary data suggest that CMF regulates cAMP signal transduction. Calculations indicate that a mechanism of simultaneously secreting and recognizing a signal molecule, as used byDictyostelium to monitor cell density, could also be used to determine the total number of cells in a tissue.  相似文献   

20.
DNA damage repair and transcription   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号