首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Periodic circadian (24-h) cycles play an important role in daily hormonal and behavioural rhythms. Usually our sleep/wake cycle, temperature and melatonin rhythms are internally synchronized with a stable phase relationship. When there is a desynchrony between the sleep/wake cycle and circadian rhythm, sleep disorders such as advanced and delayed sleep phase syndrome can arise as well as transient chronobiologic disturbances, for example from jet lag and shift work. Appropriately timed bright light is effective in re-timing the circadian rhythm and sleep pattern to a more desired time, ameliorating these disturbances. Other less potent retiming effects may also be obtained from the judicious use of melatonin and exercise.  相似文献   

2.
Internal interactions within the human circadian system: the masking effect   总被引:1,自引:0,他引:1  
R A Wever 《Experientia》1985,41(3):332-342
In the realm of human circadian rhythms, the masking effect is defined as the change in the course of deep body temperature induced by changes in the degree of physical activity, or by the alteration between sleep and wake. This effect is particularly obvious during internal desynchronization where the rhythms of deep body temperature, and the sleep-wake sleep cycle - i.e. one of the masking factors - run with different periods. Every sleep onset is accompanied by a rapid drop, and wake onset by a rapid rise in deep body temperature, each one with an overshoot of about 50% of the steady state variations. When rhythms are calculated, with the dominant temperature period as the screening period, exclusively from data obtained during sleep episodes, on the one hand, and from those obtained exclusively during wake, on the other, two average cycles emerge: the 'sleep temperature curve' and the 'wake temperature curve'. Both run in parallel but are separated by the 'masking effect'. As derived from many experiments, the mean masking effect amounts to 0.28 +/- 0.06 degree C. The masking effect also depends to some extent on the phase of the temperature rhythm; it is larger than average around the temperature maximum and during the descending phase of the temperature cycle, where the alertness commonly is highest and the probability to sleep, in general, and the REM sleep propensity, in particular, are smaller than average. This also can be interpreted to indicate that the sleep temperature curve is phase advanced relative to the wake temperature curve; this, on the average, by 0.9 +/- 0.3 h. If the individually determined amount of masking is added to the temperature data obtained during sleep, or subtracted from the temperature data obtained during wake, a temperature curve emerges that can be thought of as being 'purified' of the masking effect. Analyses of this artificial curve allow estimation of that part of the internal interactions uninfluenced by the masking effect. On the average, about half of the amount of interaction between the rhythm of sleep-wake and that of deep body temperature is explained by the masking effect, whereas the other half is 'oscillatory interaction'. Both types of interaction are inherent and inseparable parts of the circadian clock mechanism, as can be deduced from model considerations.  相似文献   

3.
Summary In the realm of human circadian rhythms, the masking effect is defined as the change in the course of deep body temperature induced by changes in the degree of physical activity, or by the alteration between sleep and wake. This effect is particularly obvious during internal desynchronization where the rhythms of deep body temperature, and the sleep-wake sleep-wake sleep cycle — i.e. one of the masking factors — run with different periods.Every sleep onset is accompanied by a rapid drop, and wake onset by a rapid rise in deep body temperature, each one with an overshoot of about 50% of the steady state variations. When rhythms are calculated, with the dominant temperature period as the screening period, exclusively from data obtained during sleep episodes, on the one hand, and from those obtained exclusively during wake, on the other, two average cycles emerge: the sleep temperature curve and the wake temperature curve. Both run in parallel but are separated by the masking effcct. As derived from many experiments, the mean masking effect amounts to 0.28±0.06°C. The masking effect also depends to some extent on the phase of the temperature rhtthm; it is larger than average around the temperature maximum and during the descending phase of the temperature cycle, where the alertness commonly is highest and the probability to sleep, in general, and the REM sleep propensity, in particular, are smaller than average. This also can be interpreted to indicate that the sleep temperature curve is phase advanced relative to the wake temperature curve; this, on the average, by 0.9±0.3 h.If the individually determined amount of masking is added to the temperature data obtained during sleep, or substracted from the temperature data obtained during wake, a temperature curve emerges that can be though of as being purified of the masking effect. Analyses of this artificial curve allow estimation of that part of the internal interactions uninfluenced by the masking effect. On the average, about half of the amount of interaction between the rhythm of sleep-wake and that of deep body temperature is explained by the masking effect, whereas the other half is oscillatory interaction. Both types of interaction are inherent and inseparable parts of the circadian clock mechanism, as can be deduced from model considerations.  相似文献   

4.
Summary Although pinealectomy has little influence on the circadian locomotor rhythms of laboratory rats, administration of the pineal hormone melatonin has profound effects. Evidence for this comes from studies in which pharmacological doses of melatonin are administered under conditions of external desynchronization, internal desynchronization, steady state light-dark conditions, and phase shifts of the zeitgeber. Taken together with recent findings on melatonin receptor concentration in the rat hypothalamus, particularly at the level of the suprachiasmatic nuclei, these results suggest that melatonin is a potent synchronizer of rat circadian rhythms and has a direct action on the circadian pacemaker. It is possible, therefore, that the natural role of endogenous melatonin is to act as an internal zeitgeber for the total circadian structure of mammals at the level of cell, tissue, organ, whole organism and interaction of that organism with environmental photoperiod changes.  相似文献   

5.
K Honma  S Honma  T Wada 《Experientia》1987,43(11-12):1205-1207
Responsiveness of free-running human circadian rhythms to a single pulse of bright light was examined in a temporal isolation unit. Bright light (5000 lx) of either 3 or 6 h duration, applied during the early subjective day, produced phase-advance shifts in both the sleep-wake cycle and the rhythm of rectal temperature; the light pulse had essentially no effect on the phase of the circadian rhythms, when it was introduced during the late subjective day or the early subjective night. The results indicate that bright light can reset the human circadian pacemaker.  相似文献   

6.
Melatonin and circadian control in mammals   总被引:5,自引:0,他引:5  
S M Armstrong 《Experientia》1989,45(10):932-938
Although pinealectomy has little influence on the circadian locomotor rhythms of laboratory rats, administration of the pineal hormone melatonin has profound effects. Evidence for this comes from studies in which pharmacological doses of melatonin are administered under conditions of external desynchronization, internal desynchronization, steady state light-dark conditions, and phase shifts of the zeitgeber. Taken together with recent findings on melatonin receptor concentration in the rat hypothalamus, particularly at the level of the suprachiasmatic nuclei, these results suggest that melatonin is a potent synchronizer of rat circadian rhythms and has a direct action on the circadian pacemaker. It is possible, therefore, that the natural role of endogenous melatonin is to act as an internal zeitgeber for the total circadian structure of mammals at the level of cell, tissue, organ, whole organism and interaction of that organism with environmental photoperiod changes.  相似文献   

7.
Sleep is a neurochemical process involving sleep promoting and arousal centers in the brain. Sleep performs an essential restorative function and facilitates memory consolidation in humans. The remarkably standardized bouts of consolidated sleep at night and daytime wakefulness reflect an interaction between the homeostatic sleep need that is manifested by increase in sleep propensity after sleep deprivation and decrease during sleep and the circadian pacemaker. Melatonin, the hormone produced nocturnally by the pineal gland, serves as a time cue and sleep-anticipating signal. A close interaction exists between the sleep-wake, melatonin, core temperature, blood pressure, immune and hormonal rhythms leading to optimization of the internal temporal order. With age the robustness of the circadian system decreases and the prevalence of sleep disorders, particularly insomnia, increases. Deviant sleep patterns are associated with increased risks of morbidity, poor quality of life and mortality. Current sleep pharmacotherapies treat insufficient sleep quantity, but fail to improve daytime functioning. New treatment modalities for sleep disorders that will also improve daytime functioning remain a scientific and medical challenge.  相似文献   

8.
Studies of regulatory mechanisms of sleep-wake rhythms have benefited greatly from mathematical modeling. There are two major frameworks of modeling: one integrates homeostatic and circadian regulations and the other consists of multiple interacting oscillators. In this article, model constructions based on these respective frameworks and their characteristics are reviewed. The two-process model and the multioscillator model are explained in detail. An appropriate mathematical abstraction is also shown to provide a viewpoint unifying the model structures, which might seem to be distinct. Recently acquired knowledge of neural regulatory mechanisms of sleep-wake rhythm has prompted modeling at the neural network level. Such a detailed model is also reviewed, and could be used to explore a possible neural mechanism underlying a pathological state of sleep-wake rhythm.  相似文献   

9.
Summary InBlaberus fuscus, combined light/dark-warm/cold cycles induce a rhythm of moulting. Most of the moults take place in the middle of the dark cold phases. Because of a stable phase-relation between moulting time and endocuticle growth rhythm, the latter is synchronized with the environmental cycles, too; lamellated layers are deposited during the light warm phases, which correspond to the time of resting of the cockroaches. Therefore, the cuticle growth is internally synchronized with rhythmic locomotory activity and metabolic rhythms.  相似文献   

10.
Evidence is clear that each melatonin-producing cell in the chick pineal gland contains a circadian oscillator that continues to function in vitro, resulting in a prominent day/night rhythm of melatonin secretion. The aim of the present investigation was to examine whether the circadian organization of the gland has an electrophysiological correlate. To this end, single-cell recordings were made from isolated chick pineal glands kept in vitro under a light/dark cycle of 12:12 h, identical to that of the donors, or under continuous light or darkness. In all the glands investigated, a very small percentage of cells exhibited sodium-dependent spontaneous spike activity with a mean frequency below 10 Hz. The cells revealed rhythms with periods in the 15- to 60-min range and, additionally, exhibited ultradian and circadian rhythms in firing, with periods of 10.75+/-1.06 h and 26.25+/-1.26 h (mean +/- standard deviation), respectively. Most of the cells exhibited circadian rhythms with higher activity during daytime than at night, showing that the electrical activity and melatonin rhythm were out of phase. Under constant light or darkness, the circadian rhythm persisted. When the light/dark cycle of the donors was phase-advanced by 5 h, the cells revealed complete entrainment. We discuss whether the cells, albeit small in number, could function as a secondary ultradian/circadian oscillator contributing to the ultradian/circadian organization of the gland.  相似文献   

11.
cAMP concentration was found to be significantly lower during desynchronized sleep than during synchronized sleep in the preoptic area of rats kept at normal laboratory temperature. No significant changes in cerebral cortex cAMP concentration were observed in the same experimental conditions.  相似文献   

12.
E C Jazwinska  K Adam 《Experientia》1985,41(12):1533-1535
Sleep deprivation was associated with decreased stature and it blunted the normal 24-h rhythm in young and in middle-aged men. Loss in stature was regained during the first recovery night of sleep. The 24-h rhythm in height is not an endogenous circadian rhythm but depends upon the periods of recumbency over the sleep/wake cycle.  相似文献   

13.
Summary Sleep deprivation was associated with decreased stature and it blunted the normal 24-h rhythm in young and in middle-aged men. Loss in stature was regained during the first recovery night of sleep. The 24-h rhythm in height is not an endogenous circadian rhythm but depends upon the periods of recumbency over the sleep/wake cycle.Acknowledgments. The first author was a Medical Research Council scholar; the second was supported by the Scottish Hospital Endowments Research Trust.  相似文献   

14.
Summary cAMP concentration was found to be significantly lower during desynchronized sleep than during synchronized sleep in the preoptic area of rats kept at normal laboratory temperature. No significant changes in cerebral cortex cAMP concentraion were observed in the same experimental conditions.This work was supported by grants from Consiglio Nazionale delle Ricerche and Ministero della Pubblica Istruzione.The authors wish to thank G. Mancinelli and L. Sabattini for technical assistance and M. Luppi for secretarial assistance.  相似文献   

15.
K Honma  S Honma 《Experientia》1988,44(11-12):981-983
A shift from circadian to circabidian periods or vice versa was observed in the rhythm of sleep and wakefulness under temporal isolation. The shift occurred in two subjects, 3 times in association with a single bright light pulse applied, 4 times in all. The finding suggests that the bright light pulse has an additional effect to the phase shift on the human circadian system.  相似文献   

16.
Most living organisms show circadian rhythms in physiology and behavior. These oscillations are generated by endogenous circadian clocks, present in virtually all cells where they control key biological processes. To study peripheral clocks in vivo, we developed an original model, the Rev-Luc mouse to follow noninvasively and longitudinally Rev-Luc oscillations in peripheral clocks using in vivo bioluminescence imaging. We found in vitro and in vivo a robust diurnal rhythm of Rev-Luc, mainly in liver, intestine, kidney and adipose tissues. We further confirmed in vivo that Rev-Luc peripheral tissues are food-entrainable oscillators, not affected by age or sex. These data strongly support the relevance of the Rev-Luc model for circadian studies, especially to investigate in vivo the establishment and the entrainment of the rhythm throughout ontogenesis. We then showed that Rev-Luc expression develops dynamically and gradually, both in amplitude and in phase, during fetal and postnatal development. We also demonstrate for the first time that the immature peripheral circadian system of offspring in utero is mainly entrained by maternal cues from feeding regimen. The prenatal entrainment will also differentially determine the Rev-Luc expression in pups before weaning underlining the importance of the maternal chrononutrition on the circadian system entrainment of the offspring.  相似文献   

17.
Summary The photic energy penetrating into the brain was increased in adult rats sustaining craniotomies sealed with transparent plastic. After blinding, these animals failed to entrain their circadian food intake rhythm to light-dark cycles. Short pulses of light did not phase-shift the freerunning rhythm. We conclude that adult rats lack brain photoreceptors mediating entrainment of circadian rhythms.  相似文献   

18.
M Saito  M Suda 《Experientia》1978,34(6):700-701
Same circadian difference in the specific activities of sucrase and maltase was observed in the purified brush border fraction as in the crude homogenate of the mucosa of rat small intestine, suggesting that the disaccharidase rhythm is not due to the mitosis rhythm of epithelial cells.  相似文献   

19.
Summary Same circadian difference in the specific activities of sucrase and maltase was observed in the purified brush border fraction as in the crude homogenate of the mucosa of rat small intestine, suggesting that the disaccharidase rhythm is not due to the mitosis rhythm of epithelial cells.  相似文献   

20.
Summary Wheel running activity rhythms of three inbred rat strains, ACI/Ztm, BH/Ztm, and LEW/Ztm, were compared in order to evaluate the effect of genetic differences on circadian rhythm parameters. Significant strain differences were found in the general pattern of the activity rhythms and their characteristic periodicities as well as in the amount and duration of wheel running activity and the timing of activity onsets and offsets. The results suggest that genetic differences exist in the coupling of the multiple circadian oscillators that generate the overall pattern of wheel running activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号