首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
在睾丸中,Sertoli’s细胞等细胞表达胶质细胞源神经营养因子(Glial cell line—derived neuotrophic factor,GDNF),通过旁分泌或自分泌方式作用于生精细胞和Sertoli’s细胞等,调节精原干细胞(Spermatogonial stem cells,SSCs)的自我更新和分化,并促进Sertoli’s细胞的增殖以及血睾屏障的形成等。  相似文献   

2.
3.
4.
Kiger AA  White-Cooper H  Fuller MT 《Nature》2000,407(6805):750-754
Stem cells maintain populations of highly differentiated, short-lived cell-types, including blood, skin and sperm, throughout adult life. Understanding the mechanisms that regulate stem cell behaviour is crucial for realizing their potential in regenerative medicine. A fundamental characteristic of stem cells is their capacity for asymmetric division: daughter cells either retain stem cell identity or initiate differentiation. However, stem cells are also capable of symmetric division where both daughters remain stem cells, indicating that mechanisms must exist to balance self-renewal capacity with differentiation. Here we present evidence that support cells surrounding the stem cells restrict self-renewal and control stem cell number by ensuring asymmetric division. Loss of function of the Drosophila Epidermal growth factor receptor in somatic cells disrupted the balance of self-renewal versus differentiation in the male germline, increasing the number of germline stem cells. We propose that activation of this receptor specifies normal behaviour of somatic support cells; in turn, the somatic cells play a guardian role, providing information that prevents self-renewal of stem cell identity by the germ cell they enclose.  相似文献   

5.
Stem cell self-renewal implies proliferation under continued maintenance of multipotency. Small changes in numbers of stem cells may lead to large differences in differentiated cell numbers, resulting in significant physiological consequences. Proliferation is typically regulated in the G1 phase, which is associated with differentiation and cell cycle arrest. However, embryonic stem (ES) cells may lack a G1 checkpoint. Regulation of proliferation in the 'DNA damage' S/G2 cell cycle checkpoint pathway is known for its role in the maintenance of chromatin structural integrity. Here we show that autocrine/paracrine gamma-aminobutyric acid (GABA) signalling by means of GABA(A) receptors negatively controls ES cell and peripheral neural crest stem (NCS) cell proliferation, preimplantation embryonic growth and proliferation in the boundary-cap stem cell niche, resulting in an attenuation of neuronal progenies from this stem cell niche. Activation of GABA(A) receptors leads to hyperpolarization, increased cell volume and accumulation of stem cells in S phase, thereby causing a rapid decrease in cell proliferation. GABA(A) receptors signal through S-phase checkpoint kinases of the phosphatidylinositol-3-OH kinase-related kinase family and the histone variant H2AX. This signalling pathway critically regulates proliferation independently of differentiation, apoptosis and overt damage to DNA. These results indicate the presence of a fundamentally different mechanism of proliferation control in these stem cells, in comparison with most somatic cells, involving proteins in the DNA damage checkpoint pathway.  相似文献   

6.
Wang H  Ouyang Y  Somers WG  Chia W  Lu B 《Nature》2007,449(7158):96-100
Self-renewal and differentiation are cardinal features of stem cells. Asymmetric cell division provides one fundamental mechanism by which stem cell self-renewal and differentiation are balanced. A failure of this balance could lead to diseases such as cancer. During asymmetric division of stem cells, factors controlling their self-renewal and differentiation are unequally segregated between daughter cells. Numb is one such factor that is segregated to the differentiating daughter cell during the stem-cell-like neuroblast divisions in Drosophila melanogaster, where it inhibits self-renewal. The localization and function of Numb is cell-cycle-dependent. Here we show that Polo (ref. 13), a key cell cycle regulator, the mammalian counterparts of which have been implicated as oncogenes as well as tumour suppressors, acts as a tumour suppressor in the larval brain. Supernumerary neuroblasts are produced at the expense of neurons in polo mutants. Polo directly phosphorylates Partner of Numb (Pon, ref. 16), an adaptor protein for Numb, and this phosphorylation event is important for Pon to localize Numb. In polo mutants, the asymmetric localization of Pon, Numb and atypical protein kinase C are disrupted, whereas other polarity markers are largely unaffected. Overexpression of Numb suppresses neuroblast overproliferation caused by polo mutations, suggesting that Numb has a major role in mediating this effect of Polo. Our results reveal a biochemical link between the cell cycle and the asymmetric protein localization machinery, and indicate that Polo can inhibit progenitor self-renewal by regulating the localization and function of Numb.  相似文献   

7.
Lin G  Xu N  Xi R 《Nature》2008,455(7216):1119-1123
In the Drosophila midgut, multipotent intestinal stem cells (ISCs) that are scattered along the epithelial basement membrane maintain tissue homeostasis by their ability to steadily produce daughters that differentiate into either enterocytes or enteroendocrine cells, depending on the levels of Notch activity. However, the mechanisms controlling ISC self-renewal remain elusive. Here we show that a canonical Wnt signalling pathway controls ISC self-renewal. The ligand Wingless (Wg) is specifically expressed in the circular muscles next to ISCs, separated by a thin layer of basement membrane. Reduced function of wg causes ISC quiescence and differentiation, whereas wg overexpression produces excessive ISC-like cells that express high levels of the Notch ligand, Delta. Clonal analysis shows that the main downstream components of the Wg pathway, including Frizzled, Dishevelled and Armadillo, are autonomously required for ISC self-renewal. Furthermore, epistatic analysis suggests that Notch acts downstream of the Wg pathway and a hierarchy of Wg/Notch signalling pathways controls the balance between self-renewal and differentiation of ISCs. These data suggest that the underlying circular muscle constitutes the ISC niche, which produce Wg signals that act directly on ISCs to promote ISC self-renewal. This study demonstrates markedly conserved mechanisms regulating ISCs from Drosophila to mammals. The identification of the Drosophila ISC niche and the principal self-renewal signal will facilitate further understanding of intestinal homeostasis control and tumorigenesis.  相似文献   

8.
Purification and unique properties of mammary epithelial stem cells   总被引:2,自引:0,他引:2  
Stingl J  Eirew P  Ricketson I  Shackleton M  Vaillant F  Choi D  Li HI  Eaves CJ 《Nature》2006,439(7079):993-997
Elucidation of the cellular and molecular mechanisms that maintain mammary epithelial tissue integrity is of broad interest and paramount to the design of more effective treatments for breast cancer. Evidence from both in vitro and in vivo experiments suggests that mammary cell differentiation is a hierarchical process originating in an uncommitted stem cell with self-renewal potential. However, analysis of the properties and regulation of mammary stem cells has been limited by a lack of methods for their prospective isolation. Here we report the use of multi-parameter cell sorting and limiting dilution transplant analysis to demonstrate the purification of a rare subset of adult mouse mammary cells that are able individually to regenerate an entire mammary gland within 6 weeks in vivo while simultaneously executing up to ten symmetrical self-renewal divisions. These mammary stem cells are phenotypically distinct from and give rise to mammary epithelial progenitor cells that produce adherent colonies in vitro. The mammary stem cells are also a rapidly cycling population in the normal adult and have molecular features indicative of a basal position in the mammary epithelium.  相似文献   

9.
Throughout the lifespan of a plant, which in some cases can last more than one thousand years, the stem cell niches in the root and shoot apical meristems provide cells for the formation of complete root and shoot systems, respectively. Both niches are superficially different and it has remained unclear whether common regulatory mechanisms exist. Here we address whether root and shoot meristems use related factors for stem cell maintenance. In the root niche the quiescent centre cells, surrounded by the stem cells, express the homeobox gene WOX5 (WUSCHEL-RELATED HOMEOBOX 5), a homologue of the WUSCHEL (WUS) gene that non-cell-autonomously maintains stem cells in the shoot meristem. Loss of WOX5 function in the root meristem stem cell niche causes terminal differentiation in distal stem cells and, redundantly with other regulators, also provokes differentiation of the proximal meristem. Conversely, gain of WOX5 function blocks differentiation of distal stem cell descendents that normally differentiate. Importantly, both WOX5 and WUS maintain stem cells in either a root or shoot context. Together, our data indicate that stem cell maintenance signalling in both meristems employs related regulators.  相似文献   

10.
Stem cells reside in a specialized regulatory microenvironment or niche, where they receive appropriate support for maintaining self-renewal and multi-lineage differentiation capacity. The niche may also protect stem cells from environmental insults including cytotoxic chemotherapy and perhaps pathogenic immunity. The testis, hair follicle and placenta are all sites of residence for stem cells and are immune-suppressive environments, called immune-privileged sites, where multiple mechanisms cooperate to prevent immune attack, even enabling prolonged survival of foreign allografts without immunosuppression. We sought to determine if somatic stem-cell niches more broadly are immune-privileged sites by examining the haematopoietic stem/progenitor cell (HSPC) niche in the bone marrow, a site where immune reactivity exists. We observed persistence of HSPCs from allogeneic donor mice (allo-HSPCs) in non-irradiated recipient mice for 30?days without immunosuppression with the same survival frequency compared to syngeneic HSPCs. These HSPCs were lost after the depletion of FoxP3 regulatory T (T(reg)) cells. High-resolution in vivo imaging over time demonstrated marked co-localization of HSPCs with T(reg) cells that accumulated on the endosteal surface in the calvarial and trabecular bone marrow. T(reg) cells seem to participate in creating a localized zone where HSPCs reside and where T(reg) cells are necessary for allo-HSPC persistence. In addition to processes supporting stem-cell function, the niche will provide a relative sanctuary from immune attack.  相似文献   

11.
干细胞微环境是平衡干细胞自我更新、多向分化和压力响应的微环境.近年来,通过大量的突变体筛选和现代的影像技术,植物根尖干细胞微环境特化和维持的调控机制取得了很大进展.该文着重概述转录因子网络、激素信号转导、染色质因子和基因组组织因子在调控根尖干细胞微环境中的作用.  相似文献   

12.
Distinctive properties of stem cells are not autonomously achieved, and recent evidence points to a level of external control from the microenvironment. Here, we demonstrate that self-renewal and pluripotent properties of human embryonic stem (ES) cells depend on a dynamic interplay between human ES cells and autologously derived human ES cell fibroblast-like cells (hdFs). Human ES cells and hdFs are uniquely defined by insulin-like growth factor (IGF)- and fibroblast growth factor (FGF)-dependence. IGF 1 receptor (IGF1R) expression was exclusive to the human ES cells, whereas FGF receptor 1 (FGFR1) expression was restricted to surrounding hdFs. Blocking the IGF-II/IGF1R pathway reduced survival and clonogenicity of human ES cells, whereas inhibition of the FGF pathway indirectly caused differentiation. IGF-II is expressed by hdFs in response to FGF, and alone was sufficient in maintaining human ES cell cultures. Our study demonstrates a direct role of the IGF-II/IGF1R axis on human ES cell physiology and establishes that hdFs produced by human ES cells themselves define the stem cell niche of pluripotent human stem cells.  相似文献   

13.
研究了大花组的束花石斛和黄花石斛的光合生理,结果表明,2种石斛叶片的解剖结构为异面叶,气孔仅分布在下表面,具气孔盖,叶脉维管束鞘不含叶绿体,无花环型结构,具C3植物特征.2种石斛的光补偿点(LCP)和光饱和点(LSP)分别为5~10μmol/(m2.s)和850~900μmol/(m2.s),最大光合速率(Pn)约为6μmol/(m2.s);CO2补偿点和饱和点分别为80~90μmol/mol和800μmol/mol;光合作用的最适温度在26~30℃.Pn日变化为双峰型曲线,首峰出现在11:00左右,最大光合速率在5~6μmol/(m2.s),次峰出现在15:00左右,夜间不吸收CO2.PEPCase活性低,RuBPCase和GO酶活性较高.以上结果表明,束花石斛和黄花石斛光合作用碳同化途径属C3植物类型,具有半阴生植物的特点.  相似文献   

14.
Adult neurogenesis arises from neural stem cells within specialized niches. Neuronal activity and experience, presumably acting on this local niche, regulate multiple stages of adult neurogenesis, from neural progenitor proliferation to new neuron maturation, synaptic integration and survival. It is unknown whether local neuronal circuitry has a direct impact on adult neural stem cells. Here we show that, in the adult mouse hippocampus, nestin-expressing radial glia-like quiescent neural stem cells (RGLs) respond tonically to the neurotransmitter γ-aminobutyric acid (GABA) by means of γ2-subunit-containing GABAA receptors. Clonal analysis of individual RGLs revealed a rapid exit from quiescence and enhanced symmetrical self-renewal after conditional deletion of γ2. RGLs are in close proximity to terminals expressing 67-kDa glutamic acid decarboxylase (GAD67) of parvalbumin-expressing (PV+) interneurons and respond tonically to GABA released from these neurons. Functionally, optogenetic control of the activity of dentate PV+ interneurons, but not that of somatostatin-expressing or vasoactive intestinal polypeptide (VIP)-expressing interneurons, can dictate the RGL choice between quiescence and activation. Furthermore, PV+ interneuron activation restores RGL quiescence after social isolation, an experience that induces RGL activation and symmetrical division. Our study identifies a niche cell–signal–receptor trio and a local circuitry mechanism that control the activation and self-renewal mode of quiescent adult neural stem cells in response to neuronal activity and experience.  相似文献   

15.
16.
E Spooncer  D Boettiger  T M Dexter 《Nature》1984,310(5974):228-230
A molecular recombinant of Rous sarcoma virus and murine amphotropic leukaemia virus, src(MoMuLV), where the avian src oncogene has been placed under the influence of a murine virus promoter sequence, has been reported. Infection of long-term marrow cultures with this virus led to a dramatic change in the relative numbers of stem cells, granulocyte-macrophage progenitor cells and mature cells found in normal haematopoietic cell development. However, although the balance between self-renewal, differentiation and development was disturbed, injection of the cultured cells into irradiated syngeneic recipients did not lead to the development of leukaemia. Thus, although the control had been 'loosened', the host regulatory mechanisms were sufficient to impose a restraint on unlimited growth of the cells. We now show that the stem cells from the src-infected cultures show a remarkably increased capacity for self-renewal in vitro in situations which are inimical to the maintenance of self-renewal in normal uninfected stem cells and that self-renewal/differentiation can be modified by the culture conditions.  相似文献   

17.
本研究用基因测序和BLAST检验扩增的精原干细胞DNA和c-raf的同源性;用MTT法观察c-rafASODNs(反义c-raf寡脱氧核甘酸)拮抗c-raf对体外培养精原干细胞培养的作用,探讨原癌基因c-raf对体外精原干细胞培养增殖的影响.实验结果显示扩增的精原干细胞DNA和c-raf的同源性98%;c-rafASODNs对体外培养的精原干细胞存活呈剂量依赖性抑制作用(P<0.05).提示c-raf在精原干细胞中表达;原癌基因c-raf促进精原干细胞体外培养的增殖.  相似文献   

18.
干细胞以其自我更新和多向分化的能力得到了国际社会的普遍关注,为干细胞疗法的临床应用带来了希望.该文结合文献计量方法,对干细胞以及诱导多能干细胞、胚胎干细胞和间充质干细胞等3个干细胞研究重点领域的科研现状进行了分析,总结了这些领域的发展趋势和重点研究方向,并根据分析结果,对我国干细胞领域采取的措施、今后发展的方向提出了建...  相似文献   

19.
RhoGTPases are small molecules that control a wide variety of signal transduction pathways. Their profound function in regulating the actin cytoskeleton is well recognized. Stem cells are unique in their ability to self-renew and produce progenitor cells that can differentiate into specialized cells. RhoGTPases influence stem cell morphology and cell migration as well as stem cell self-renewal, proliferation, transplantation, homing and differentiation. In this review, the multiple roles of the RhoGTPases in stem cells are discussed.  相似文献   

20.
Zon LI 《Nature》2008,453(7193):306-313
When stem cells divide, they can generate progeny with the same developmental potential as the original cell, a process referred to as self-renewal. Self-renewal is driven intrinsically by gene expression in a cell-type-specific manner and is modulated through interactions with extrinsic cues from the environment, such as growth factors. However, despite the prevalence of the term self-renewal in the scientific literature, this process has not been defined at the molecular level. Haematopoietic stem cells are an excellent model for the study of self-renewal because they can be isolated prospectively, manipulated relatively easily and assessed by using well-defined assays. Establishing the principles of self-renewal in haematopoietic stem cells will lead to insights into the mechanisms of self-renewal in other tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号