首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have explored the properties of a Ca2+-dependent cell-signalling pathway that becomes active when cultured equine sweat gland cells are stimulated with ATP. The ATP-regulated, Ca2+-influx pathway allowed Sr2+ to enter the cytoplasm but permitted only a minimal influx of Ba2+. Experiments in which cells were repeatedly stimulated with ATP suggested that Sr2+, but not Ba2+, could become incorporated into the agonist-sensitive, cytoplasmic Ca2+ store. Further evidence for this was provided by experiments using ionomycin, a Ca2+ ionophore which has no affinity for Sr2+.  相似文献   

2.
The porcine antral follicles, 3–6 mm in diameter, were dissected from the ovaries of mature pigs, and then granulosa and cumulus cells were isolated from each follicle. In atretic follicles, high activity of neutral Ca2+/Mg2+-dependent endonuclease and DNA ladder formation, estimated by electrophoresis, were noted in granulosa cells but not in cumulus cells. Extremely low activity of the endonuclease and no DNA ladder formation were observed in both types of cells obtained from healthy follicles. Moreover, apoptotic cells were observed histochemically among granulosa cells only. A good correlation (r=0.987) between the endonuclease activity of granulosa cells and the progesterone/estradiol ratio of follicular fluid in each follicle was found. These results suggest that apoptosis occurs in granulosa cells but not cumulus cells in the atretic antral follicles in pigs.  相似文献   

3.
Summary The role of Ca2+ in secretagogue-induced insulin release is documented not only by the measurements of45Ca fluxes in pancreatic islets, but also, by direct monitoring of cytosolic free Ca2+, [Ca2+]i. As demonstrated, using the fluorescent indicator quin 2, glyceraldehyde, carbamylcholine and alanine raise [Ca2+]i in the insulin secreting cell line RINm5F, whereas glucose has a similar effect in pancreatic islet cells. The regulation of cellular Ca2+ homeostasis by organelles from a rat insulinoma, was investigated with a Ca2+ selective electrode. The results suggest that both the endoplasmic reticulum and the mitochondria participate in this regulation, albeit at different Ca2+ concentrations. By contrast, the secretory granules do not appear to be involved in the short-term regulation of [Ca2+]i. Evidence is presented that inositol 1,4,5-trisphosphate, which is shown to mobilize Ca2+ from the endoplasmic reticulum, is acting as an intracellular mediator in the stimulation of insulin release.  相似文献   

4.
The Ca2+ ionophore ionomycin induced cytosolic [Ca2+]i elevation as well as strong activation of Cl efflux in mouse mammary epithelial cell lines expressing wild-type or mutated (deletion of phenylalaline 508) cystic fibrosis transmembrane conductance regulator (CFTR) or vector. Ionomycin-induced Cl efflux was abolished by the intracellular Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid, whereas both activators and inhibitors of phospholipase A2 had no effect, indicating the involvement of Ca2+-dependent Cl- channels. Stimulation of arachidonic acid release by ionomycin and phorbol ester was not significantly different between wild-type or mutated cell lines, whereas vector-transfected cells exhibited a significant higher release, which was shown to be due to larger amount of immunoreactive cytosolic phospholipase A2. These results indicate that phospholipase A2 activity of C127 cells was not influenced by the presence of wild-type or mutated CFTR. Received 27 April 1999; received after revision 11 June 1999; accepted 23 July 1999  相似文献   

5.
Effects of serotonin (5-HT) on cerebral cortical neurons were examined by patch clamp techniques. 5-HT produced a variety of responses such as outward (19/73 patches/neurons), slow inward (15/73 patches/neurons), fast inward (8/73 patches/neurons), and mixed currents (initially fast inward deflection followed by an outward response: 2/73 patches/neurons), with a latency of 12 sec, 15 sec, 0 sec, and 0 sec respectively, at a holding potential of −60 mV in whole-cell patches. The fast inward currents were again evoked by a selective 5-HT3 receptor agonist, 1-(m-chlorophenyl)-biguanide hydrochloride (CPBG). In the cell-attached patch clamp configuration, 5-HT inside the patch pipette elicited single channel currents with slope conductances of 42 pS and 132 pS (4/42 patches/neurons). CPBG inside the patch pipette evoked inward single channel currents with a lower slope conductance of 41 pS (3/23 patches/neurons). In contrast, application of 5-HT or a 5-HT2 receptor agonist, α-methyl-5-hydroxytryptamine-maleate, outside the patch pipette induced outward single channel currents with a major slope conductance of 140 pS (8/30 patches/neurons) or 135 pS (6/20 patches/neurons), respectively. These results indicate that the outward and fast inward currents may be mediated respectively by the 5-HT2 receptor, which is coupled to a G-protein, and by the 5-HT3 receptor, which contains the non-selective cation channel, and that the mixed type may be caused by both the 5-HT2 and 5-HT3 receptors. Received 27 September 1996; received after revision 4 November 1996; accepted 7 November 1996  相似文献   

6.
Effects of extracellular magnesium ions ([Mg2+]o ) on intracellular free Mg2+ ([Mg2+]i ) and its subcellular distribution in single fission yeast cells, Schizosaccharomyces pombe, were studied with digital-imaging microscopy and an Mg2+ fluorescent probe (mag-fura-2). Using 0.44 mM [Mg2+]o , [Mg2+]i in yeast cells was 0.91±0.08 mM. Elevation of [Mg2+]o to 1.97 mM induced rapid (within 5 min) increments in [Mg2+]i (2.18±0.11 mM). Lowering [Mg2+]o to 0.06 mM, however, exerted no significant effects on [Mg2+]i (0.93±0.14 mM), at least for periods of up to 30 min. Irrespective of the [Mg2+]o used, the subcellular distribution of [Mg2+]i remained hetero geneous, i.e. where the sub-plasma membrane region >cytoplasm >nucleus. [Mg2+] in all three subcellular compartments increased significantly, two- to threefold, concomitant with [Mg2+]i when placed in 1.97 mM [Mg2+]o . We conclude that [Mg2+]i in fission yeast is maintained at a physiologic level when [Mg2+]o is low, but intracellular free Mg2+ rapidly rises when [Mg2+]o is elevated. Like most eukaryotic cells, yeast may have a Mg2+ transport system(s) which functions to maintain gradients of Mg2+ from the outside to inside the cell and among its subcellular compartments. Received 18 April 1996; received after revision 4 July 1996; accepted 26 July 1996  相似文献   

7.
Nickel is considered to be a selective blocker of low-voltage-activated T-type calcium channel. Recently, the Ni2+-binding site with critical histidine-191 (H191) within the extracellular IS3–IS4 domain of the most Ni2+-sensitive Cav3.2 T-channel isoform has been identified. All calcium channels are postulated to also have intrapore-binding site limiting maximal current carried by permeating divalent cations (PDC) and determining the blockade by non-permeating ones. However, the contribution of the two sites to the overall Ni2+ effect and its dependence on PDC remain uncertain. Here we compared Ni2+ action on the wild-type “Ni2+-insensitive” Cav3.1w/t channel and Cav3.1Q172H mutant having glutamine (Q) equivalent to H191 of Cav3.2 replaced by histidine. Each channel was expressed in Xenopus oocytes, and Ni2+ blockade of Ca2+, Sr2+, or Ba2+ currents was assessed by electrophysiology. Inhibition of Cav3.1w/t by Ni2+ conformed to two sites binding. Ni2+ binding with high-affinity site (IC50 = 0.03–3 μM depending on PDC) produced maximal inhibition of 20–30 % and was voltage-dependent, consistent with its location within the channel’s pore. Most of the inhibition (70–80 %) was produced by Ni2+ binding with low-affinity site (IC50 = 240–700 μM). Q172H-mutation mainly affected low-affinity binding (IC50 = 120–160 μM). The IC50 of Ni2+ binding with both sites in the Cav3.1w/t and Cav3.1Q172H was differentially modulated by PDC, suggesting a varying degree of competition of Ca2+, Sr2+, or Ba2+ with Ni2+. We conclude that differential Ni2+-sensitivity of T-channel subtypes is determined only by H-containing external binding sites, which, in the absence of Ni2+, may be occupied by PDC, influencing in turn the channel’s permeation.  相似文献   

8.
The dose-dependent effect of CGP 45715A on the LTD4-induced Ca2+ response of glomerular mesangial cells has been studied. Our results demonstrate that the LTD4-dependent increase in the cytosolic Ca2+ concentration primarily involves an InsP3-mediated release of Ca2+ from intracellular storage sites and to a minor extent an enhanced influx of Ca2+ through receptor-operated Ca2+ channels located in the plasma membrane. The action of CGP 45715A on the Ca2+ response is an inhibitory one and is convincingly explained by a displacement of LTD4 from its receptor site(s). The contractile effect of LTD4 on pulmonary smooth muscle is proposed to be mainly caused by a receptor-mediated hydrolysis of phosphatidylinositol-4,5-bisphosphate.  相似文献   

9.
Acetylcholine releases calcium from cytoplasmic stores and permits an influx of calcium in salivary acinar cells. The resultant rise in [Ca2+]i causes an increase in potassium permeability which is an important part of the secretory response. We have investigated the effects of 12-0-tetradecanoyl phorbol-13-acetate, a potent activator of protein kinase C, upon this regulation of potassium permeability in superfused pieces of rat submandibular salivary gland. This compound inhibited the initial [Ca2+]o-independent component of the response of acetylcholine but had no effect upon the subsequent [Ca2+]o-dependent phase. This compound does not, therefore, appear to inhibit receptor-regulated calcium influx.  相似文献   

10.
Summary Ca2+ loaded inside-out vesicles from human red blood cells, yielding Ca2+ into a Ca2+ free medium with 4 mM EGTA, 2 mM ADP and 10 mM phosphate, produced an excess of 14.9 pmoles · min–1 · (mg protein)–1 of ATP compared to controls in which the transmembrane Ca2+ gradient was abolished by the ionophore A 23 187.We are obliged to Dr H. Fey and Miss H. Pfister (Veterinarybacteriological Institute Bern) and Dr H. Porzig (Pharmacological Institute Bern) for help and advice.  相似文献   

11.
Summary Streptomyces species 3M grew in peptone yeast extract medium with 1000 g/ml K2Cr2O7. Incubation of the chromate with different cell fractions in the presence of NADH and NADPH resulted in a decrease of Cr6+ in the reaction mixture. The level of Cr6+ was reduced by 82.7% by a particulate cell fraction obtained by centrifugation at 105,000×g for 1 h, in the presence of NADH. The reducing enzyme was associated with this cell fraction. The enzyme was constitutive and reduced Cr6+ to Cr3+.  相似文献   

12.
Among the heterogeneous population of circulating hematopoietic and endothelial progenitors, we identified a subpopulation of CD133+ cells displaying myogenic properties. Unexpectedly, we observed the expression of the B-cell marker CD20 in blood-derived CD133+ stem cells. The CD20 antigen plays a role in the modulation of intracellular calcium homeostasis through signaling pathways activation. Several observations suggest that an increase in intracellular calcium concentration ([Ca2+]i) could be involved in the etiology of the Duchenne muscular dystrophy (DMD). Here, we show that a CD20-related signaling pathway able to induce an increase in [Ca2+]i is differently activated after brain derived neurotrophic factor (BDNF) stimulation of normal and dystrophic blood-derived CD133+ stem cells, supporting the assumption of a “CD20-related calcium impairment-affecting dystrophic cells. Presented findings represent the starting point toward the expansion of knowledge on pathways involved in the pathology of DMD and in the behavior of dystrophic blood-derived CD133+ stem cells. Received 15 October 2008; received after revision 27 November 2008; accepted 05 December 2008  相似文献   

13.
Conotoxins of the O-superfamily affecting voltage-gated sodium channels   总被引:1,自引:1,他引:0  
The venoms of predatory cone snails harbor a rich repertoire of peptide toxins that are valuable research tools, but recently have also proven to be useful drugs. Among the conotoxins with several disulfide bridges, the O-superfamily toxins are characterized by a conserved cysteine knot pattern: C-C-CC-C-C. While ω-conotoxins and κ-conotoxins block Ca2+ and K+ channels, respectively, the closely related δ- and μO-conotoxins affect voltage-gated Na+ channels (Nav channels). δ-conotoxins mainly remove the fast inactivation of Nav channels and, thus, functionally resemble long-chain scorpion α-toxins. μO-conotoxins are functionally similar to μ-conotoxins, since they inhibit the ion flow through Nav channels. Recent results from functional and structural assays have gained insight into the underlying molecular mechanisms. Both types of toxins are voltage-sensor toxins interfering with the voltage-sensor elements of Nav channels. Received 27 December 2006; received after revision 30 January 2007; accepted 19 February 2007  相似文献   

14.
The participation of protein kinase C (PKC) in the regeneration of tentacles ofHydra vulgaris was studied. Regeneration was induced by 1,2-sn-dioctanoyl-glycerol (diC8) and the novel diterpenoidic diacylglycerol verrucosin B (VB), a potent PKC activator extracted from marine sources. VB substantially increasedHydra average tentacle number (ATN) at concentrations 10,000 times lower than those needed for diC8 to exert an analogous effect. When both synthetic and natural VB analogues were tested, the structure/activity relationship found inHydra tentacle regeneration was identical to that known for DAG-induced activation of PKC in vitro. VB-induced increase of ATN was strongly counteracted by the PKC inhibitors sphingosine and A3, but was not synergic with a tenfold increase of extracellular Ca2+ concentration or with an increase of intracellular Ca2+ concentration obtained either with the ionophore A23187 or with thapsigargin. This suggested the involvement of a non-Ca2+-dependent PKC in VB-triggeredHydra tentacle regeneration. The involvement of phospholipase A2 (PLA2) activation inHydra regenerative processes was studied using the novel site-specific inhibitor of the enzyme, oleyloxyethylphosphorylcholine (OOPC), which brought about a striking inhibition of ATN in the low molar range. This effect was reversed by arachidonic acid (AA), while an enhancement of ATN was also observed with an inhibitor of AA uptake from membrane phospholipids, thus suggesting that PLA2-catalysed liberation of AA is involved inHydra tentacle regeneration. OOPC also blocked verrucosin B-induced PKC-mediated enhancement of ATN, thus suggesting that this effect is also mediated by PLA2 activation. ATN was increased also by compound 48/80, a direct activator of pertussis toxin-sensitive GTP-binding proteins, and this effect was counteracted by pertussis toxin pretreatment. None of the known AA cascade inhibitors exhibited an effect on ATN comparable to that exerted by OOPC, but, surprisingly, the cycloxygenase inhibitor indomethacin strongly enhanced ATN, thus suggesting that prostanoids might effect a negative control onHydra regenerative processes. This represents the first attempt so far reported to study the implication of more than one biochemical pathway as a signalling event in the hydroid regenerative processes.  相似文献   

15.
Diversity of Cl− Channels   总被引:5,自引:0,他引:5  
Cl channels are widely found anion pores that are regulated by a variety of signals and that play various roles. On the basis of molecular biologic findings, ligand-gated Cl channels in synapses, cystic fibrosis transmembrane conductors (CFTRs) and ClC channel types have been established, followed by bestrophin and possibly by tweety, which encode Ca2+-activated Cl channels. The ClC family has been shown to possess a variety of functions, including stabilization of membrane potential, excitation, cellvolume regulation, fluid transport, protein degradation in endosomal vesicles and possibly cell growth. The molecular structure of Cl channel types varies from 1 to 12 transmembrane segments. By means of computer-based prediction, functional Cl channels have been synthesized artificially, revealing that many possible ion pores are hidden in channel, transporter or unidentified hydrophobic membrane proteins. Thus, novel Cl-conducting pores may be occasionally discovered, and evidence from molecular biologic studies will clarify their physiologic and pathophysiologic roles. Received 28 July 2005; received after revision 25 August 2005; accepted 21 September 2005  相似文献   

16.
The lack of Na+,K+-ATPase expression in intercalated cells (IC) is an intriguing condition due to its fundamental role in cellular homeostasis. In order to better understand this question we compared the activities of Na+,K+-ATPase and Na+-ATPase in two MDCK cell clones: the C11, with IC characteristics, and the C7, with principal cells (PC) characteristics. The Na+,K+-ATPase activity found in C11 cells is far lower than in C7 cells and the expression of its β-subunit is similar in both cells. On the other hand, a subset of C11 without α-subunit expression has been found. In C11 cells the Na+-ATPase activity is higher than that of the Na+,K+-ATPase, and it is increased by medium alkalinization, suggesting that it could account for the cellular Na+-homeostasis. Although further studies are necessary for a better understanding of these findings, the presence of Na+-ATPase may explain the adequate survival of cells that lack Na+,K+-ATPase. Received 09 July 2008; received after revision 03 August 2008; accepted 12 August 2008  相似文献   

17.
Summary Zn2+ (10–100 M) elevated the frequency of miniature end-plate potentials (MEPPs) in the mouse diaphragm. The effect did not depend on external Ca2+. Botulinum type A toxin (BTXA, 50 ng/ml) abolished MEPPs almost completely within 30 min. Zn2+ (100 M) restored MEPPs and increased their frequency after they had been abolished by BTXA in Ca2+-free solutions. The antagonistic effect of Zn2+ in the Ca2+-free solution was reduced by exposing the diaphragm to the toxin in the Ca2+-free solutions containing high K+. Thus, the action of BTXA is probably enhanced by depolarization of the motor nerve terminals.  相似文献   

18.
On acontia ofCalliactis parasitica it was observed that mechanical stimuli applied by a gelatin probe, a method effective in tentacles of Anthozoa, do not induce the discharge of nematocytes. Hyposmotic shock, performed by treatment with NaCl solution 35% hyposmotic with respect to sea water, induces, in the presence of Ca2+, the discharge that spreads along the acontial filament, as previously observed following treatment with SCN. The hyposmotic shock-induced discharge is blocked by Gd3+ at a concentration of 1 M. 10 M Gd3+ prevents also the SCN-induced discharge. These results suggest the presence of stretch activated cation channels either in nematocytes and/or in supporting cells as well as a possible effect of SCN on this class of ion channels.  相似文献   

19.
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid which regulates multiple biological parameters in a number of cell types, including stem cells. Here we report, for the first time, that S1P dose-dependently stimulates differentiation of adipose tissue-derived mesenchymal stem cells (ASMC) towards smooth muscle cells. Indeed, S1P not only induced the expression of smooth muscle cell-specific proteins such as α-smooth muscle actin (αSMA) and transgelin, but also profoundly affected ASMC morphology by enhancing cytoskeletal F-actin assembly, which incorporated αSMA. More importantly, S1P challenge was responsible for the functional appearance of Ca2+ currents, characteristic of differentiated excitable cells such as smooth muscle cells. By employing various agonists and antagonists to inhibit S1P receptor subtypes, S1P2 turned out to be critical for the pro-differentiating effect of S1P, while S1P3 appeared to play a secondary role. This study individuates an important role of S1P in AMSC which can be exploited to favour vascular regeneration. Received 06 March 2009; accepted 17 March 2009  相似文献   

20.
HAb18G/CD147 is a heavily glycosylated protein containing two immunoglobulin superfamily domains. Our previous studies have indicated that overexpression of HAb18G/CD147 enhances metastatic potentials in human hepatoma cells by disrupting the regulation of store-operated Ca2+ entry by nitric oxide (NO)/cGMP. In the present study, we investigated the structure-function of HAb18G/CD147 by transfecting truncated HAb18G/CD147 fragments into human 7721 hepatoma cells. The inhibitory effect of HAb18G/CD147 on 8-bromo-cGMP-regulated thapsigargin-induced Ca2+ entry was reversed by the expression of either C or N terminus truncated HAb18G/CD147 in T7721C and T7721N cells, respectively. The potential effect of HAb18G/CD147 on metastatic potentials, both adhesion and invasion capacities, of hepatoma cells was abolished in T7721C cells, but not affected in T7721N cells. Release and activation of matrix metalloproteinases (MMPs), MMP-2 and MMP-9, were found to be enhanced by the expression of HAb18G/CD147, and this effect was abolished by both truncations. Thapsigargin significantly enhanced release and activation of MMPs (MMP-2 and MMP-9) in non-transfected 7721 cells, and this effect was negatively regulated by SNAP. However, no effects of thapsigargin or SNAP were observed in T7721 cells, and expression of HAb18G/CD147 enhanced secretion and activation of MMPs at a stable and high level. Taken together, these results suggest that both ectodomain and intracellular domains of HAb18G/CD147 are required to mediate the effect of HAb18G/CD147 on the secretion and activation of MMPs and metastasis-related processes in human hepatoma cells by disrupting the regulation of NO/cGMP-sensitive intracellular Ca2+ mobilization although each domain may play different roles.Received 1 April 2004; received after revision 15 June 2004; accepted 22 June 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号