首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为提升车辆稳定性控制系统(VDC)的性能,综合考虑前轮转角、车速和路面附着,提出一个车辆转向过程中的稳定性指标。基于该稳定性指标,得到综合考虑车辆动力性、操控性和稳定性的车速上限。制定了一种车速控制和主动横摆力矩联合控制的控制策略,同时控制发动机扭矩和主动横摆力矩。实车实验证明了该控制策略在高速、大转向角时的有效性。  相似文献   

2.
为进一步提高分布式驱动电动汽车行驶过程中的稳定性,提出主动前轮转向(AFS)和直接横摆力矩控制(DYC)协调控制策略.为提高车辆稳态行驶时转向能力,设计基于滑模控制(SMC)的前轮主动转向控制器实时修正前轮转角;以维持车辆工作在稳态工作区为控制目标,设计基于模型预测控制(MPC)的车辆稳定性控制器,通过设定的分配规则按轴荷比等比例分配各轮驱/制动力矩.利用相平面法作为判定依据自适应分配各控制器权重,实现控制器之间的切换.在连续转向工况下,对控制算法进行仿真验证.结果表明:在相同转角输入下,相较于无控车辆,受控状态下车辆的横摆稳定性能提高了16%,行驶状态得到了改善.  相似文献   

3.
基于差动助力转向的基本原理及助力特性分析结论,提出一种基于参考转向盘力矩的转向盘力矩直接控制策略,结合抗积分饱和变参数PI(比例-积分)控制算法,开发分布式驱动电动汽车差动助力转向控制器,并进行转向系统参数灵敏度分析和控制系统稳定性分析;设计机械转向系统故障容错策略.Carsim与Simulink联合仿真结果表明:常规工况下,所开发的控制器在保证车辆的操纵稳定性的同时,有效地减小了驾驶员的操纵负担;在机械转向系统故障的换道工况下,所开发的控制器实现了车辆的独立换道,提高了车辆行驶的安全性.  相似文献   

4.
提出了应用稳定域评价车辆操纵稳定性控制策略效果的方法。建立了包含Pacejka轮胎魔术公式车辆三自由度非线性动力学模型,通过仿真和实车试验对比验证了模型的有效性。基于车辆非线性动力学模型,分析了车辆不同前轮转角条件下的相平面平衡点变化特性,获得了不同速度情况下的车辆稳态前轮临界转角。在构建车辆系统二次型函数的基础上,利用Lyapunov法和车辆系统稳定特性确定了车辆空间稳定域。基于经典的四轮转向和直接横摆力矩控制策略,从稳定域角度对控制策略效果进行了评价。车辆在满载条件下的蛇形仿真结果表明:应用上述方法确定的车辆行驶稳定域能够较好地表征车辆系统稳定性;稳定域是评价车辆稳定性控制策略的有效方法。  相似文献   

5.
对带有线控制动系统(brake by wire,BBW)的车辆进行研究,提出了一种横摆稳定性优化控制策略.以二自由度单轨车辆模型为参考模型,利用比例-积分(proportionalintegral,PI)控制算法求出附加横摆力矩.由所计算出的车辆附加横摆力矩、方向盘转角来识别驾驶员转向意图和车辆实际行驶特性,通过广义逆法和数学归划法相结合的方法将附加横摆力矩分配到作用车轮上,由线控制动系统采用主缸定频调压法对各轮缸的目标液压力进行跟踪控制.硬件在环试验结果表明,该控制策略能够有效地保证车辆在高附和低附路面工况下的横摆稳定性.  相似文献   

6.
提出一种分布式驱动电动汽车行驶稳定性分层控制策略. 策略分为基于滑模控制的广义力矩计算层、基于二次规划的滑移率决策层和基于ABS/ASR的滑移率追踪层. 搭建包括双电机独立驱动系统在内的硬件在环仿真平台,进行了分布式驱动电动汽车典型行驶工况的仿真. 与传统车辆稳定性控制策略的对比发现,文中提出的策略能够在对纵向车速影响较小的前提下,提高车辆操纵稳定性,在部分执行器失效时仍能确保车辆的行驶安全.   相似文献   

7.
对电动汽车的线控转向系统结构和基于两自由度的车辆动力学模型对线控转向稳态增益不变的理想转向传动比进行了设计;同时,利用MATLAB/Simulink建立线控转向系统数学模型和主动转向控制策略。在主动转向控制中,通过理想转向传动比和模糊滑模变结构动态稳定性主动控制算法,控制补偿轮边转向电机的转角。通过正弦输入的仿真试验表明,以理想转向传动比为基础,设计的此算法能满足车辆前轮转角实时补偿的需求,进而可有效提高了汽车的行驶稳定性。  相似文献   

8.
以纯电动汽车在加速过程中的驱动转矩为研究对象,提出了以加速踏板开度和电动机转速确定纯电动汽车基准转矩的方法.根据纯电动汽车在不同车速加速时对驱动转矩的需求不同,建立了以车速和加速踏板开度及其变化率为输入变量,转矩补偿增量为输出变量的模糊控制器,并对基准转矩进行转矩优化.针对纯电动车加速时,不同车速对转矩补偿增量的影响程度,设计了不同驱动转矩控制策略在相同加速踏板动作下的加速对比试验.结果表明:考虑加速时车速因素的转矩优化控制策略提高了纯电动汽车在中低车速时的加速动力性和高速时的加速操稳性.  相似文献   

9.
针对四轮独立转向电动汽车转向系统成本高、但功能开发程度低的问题,提出一种车辆斜向行驶控制策略,优化四轮独立转向电动汽车换道过程中的行驶稳定性. 基于四轮独立转向电动汽车横向、纵向二自由度车辆模型,提出一种横纵向耦合轨迹跟踪控制方法,该方法基于线性时变模型采用模型预测控制(MPC)算法,对横向偏差、航向角偏差及纵向速度偏差进行闭环控制. 设计车辆稳定性控制器,包括横摆力矩控制器和转矩分配控制器,同时提高车辆轨迹跟踪精度和行驶稳定性. 最后搭建Simulink/Carsim/Prescan联合仿真平台,对四轮独立转向电动汽车双移线工况进行模拟换道仿真,仿真结果证明了斜向变道的可行性和横纵向耦合轨迹跟踪控制方法的有效性.   相似文献   

10.
在对车辆制动过程进行力学分析和机械自动变速重型车辆降挡和不降挡两种制动控制策略的比较基础上,提出了在不降挡的前提下,当发动机辅助制动力矩影响行驶稳定性时分离离合器;当车速降低到发动机辅助制动力矩不影响行驶稳定性时接合离合器的控制策略.并对制动过程中分离离合器后是否再次接合离合器这2种情况下制动时的制动减速度、制动时间和制动距离进行比较分析.分析表明当发动机辅助制动力矩不影响行驶稳定性时,接合离合器可明显减少制动时间和制动距离.  相似文献   

11.
针对转向系统失效的情况,基于执行器扭矩重新分配,提出了一种容错控制策略;根据所需车辆运动,建立双点预瞄模型,推导出期望的方向盘转角;利用二自由度汽车模型,进一步得到目标横摆角速度以及目标车身侧偏角,利用滑模控制得到所需的横摆力矩,通过扭矩分配策略实现容错控制;通过控制各个车轮执行器的输出扭矩,使汽车沿规划路径行驶;通过仿真实验,汽车的横摆角速度与期望的横摆角速度吻合度极高,提出的算法可以有效地应对线控转向汽车的转向故障,验证了针对转向失效的容错控制的有效性,有一定的工程实用性。  相似文献   

12.
针对分布式独立转向系统存在的转角分配问题,阐述了分布式转向的系统结构和工作原理,并基于阿克曼转向定理,同时考虑前轮轮胎侧偏,推导出适合前轮独立转向(2WIS)和四轮独立转向(4WIS)的转角分配算法,研究了该算法对车辆轮胎磨损情况和行驶稳定性的优化效果;利用线性二自由度汽车模型,得出轮胎侧偏角与车速、横摆角速度及车轮转角之间的关系,并利用得出的轮胎侧偏角对阿克曼转向定理进行修正,得出各车轮的转角分配关系;最后,通过Carsim-Simulink联合仿真来验证该转角分配方法的正确性,通过评价轮胎侧向力的优化情况来确定轮胎磨损的改善状况,通过质心侧偏角来评价车辆的行驶稳定性.仿真结果表明,所提出的转角分配方法对于改善轮胎磨损情况和提高车辆行驶稳定性具有很好的效果.  相似文献   

13.
针对四轮独立驱动电动汽车转向稳定性的横摆力矩控制问题,建立了七自由度整车模型和Dugoff轮胎模型.基于滑模控制理论,选择质心侧偏角和横摆角速度两者为联合控制变量,并以汽车车速和路面附着系数为输入,运用模糊控制理论确定联合控制变量的联合控制参数,设计了四轮独立驱动电动汽车转向稳定性的横摆力矩控制策略.在Matlab/Simulink环境下选取不同车速、不同路面附着系数进行了连续转向行驶和突然转向行驶的仿真分析.结果表明,所设计的控制策略能够将质心侧偏角和横摆角速度控制在稳定范围内,使车辆在任意转向行驶工况下保持稳定,最大限度地提高轮毂电动汽车的转向稳定性.  相似文献   

14.
针对分布式全线控电动汽车四轮独立驱动/独立制动/独立转向的结构特点,提出一种基于分层架构的底盘集成控制策略.该策略包括参考目标设定、集成控制层以及控制分配层3个主要部分.参考目标设定主要实现驾驶员操作信息与车辆控制目标的转换,从车辆水平方向上可以划分成纵向加减速特性和侧向操纵稳定性;集成控制层利用具有反馈校正特征的模型预测控制方法实现对整车控制力和力矩的多目标优化;控制分配层以各车轮轮胎负荷率最低为优化目标,实现对各车轮驱动力矩和车轮转角的分配.从仿真分析和实车低速工况验证的结果来看,所提出的底盘集成控制策略能够使车辆在实际行驶时较好地跟踪参考目标,并通过控制各轮胎负荷率近似相等来提高车辆的稳定性.  相似文献   

15.
为了提高电传动履带车辆的原地转向性能,从履带车辆原地转向动力学模型出发,提出一种基于双电机力矩控制的电传动履带车辆原地转向控制策略,首先增大电机力矩初始值以提高转向响应速度,进而将方向盘转角信号引入横摆角速度负反馈增益从而实现驾驶员对转向速度的控制.使用D2P快速原型开发系统构建了履带车辆原地转向“驾驶员+控制器”在环仿真平台,通过实时仿真对所提出的控制算法进行了验证,结果表明设计的控制策略正确有效,且具有良好的实时性.  相似文献   

16.
针对汽车线控转向系统在转向盘和转向轮之间不存在机械连接的问题,进行适当的转向控制,使转向轮转角与转向盘转角的关系根据行驶状况实时调整.分析了线控转向系统转向控制的实现结构、工作原理和控制目标.从车辆动力学与控制的角度归纳分析了转向控制的内容,包括转向传动比算法、车辆稳定性控制、四轮转向控制、路径跟踪控制和转向电动机控制算法等方面,分析了经典控制方法、鲁棒控制方法、滑模控制方法、智能控制和分数阶PID控制等多种控制方法.分析了线控转向系统转向控制的试验技术,指出了转向控制研究的应用前景和发展趋势.结果表明:线控转向系统进行适当的转向控制能提高汽车操纵稳定性.  相似文献   

17.
重型矿用汽车多参数动力性换挡规律   总被引:1,自引:0,他引:1  
基于矿用汽车载荷变化大、行驶环境多变、油门变化频繁的特点,依据重载爬坡和轻载下坡的典型工况,制定了重型矿用汽车多参数动力性换挡策略.利用函数叠加法建立康明斯QSL-FR91674型发动机全特性曲线,得到不同油门开度情况下发动机输出转速与输出转矩的表达式.根据发动机输出动力特性,计算得到3550型矿用汽车车速、油门开度和加速度三参数动力性换挡规律.再结合道路状况识别方法、车辆载荷、驾驶员操作意图,针对轻载下坡和重载爬坡工况,修正得到重型矿用汽车多参数动力性换挡规律.在Maplesim中建立换挡模型,通过仿真计算,得到修正前后车辆轻载下坡路况时挡位和车速变化曲线,后者避免了不必要的换挡,保证了车辆的动力性能.  相似文献   

18.
车辆在低附着路面转向时转向阻力矩大幅降低,导致转向盘转矩随之减小,严重影响驾驶员的路感,易导致事故的发生.鉴于此,提出电动助力转向电流补偿控制策略以提高低附着路面驾驶员路感.利用扩展卡尔曼滤波方法估计出低附着路面前轴侧向力,进而计算出补偿电流值.在MATLAB/Simulink中建立系统仿真模型,利用实车试验数据与仿真数据对比,验证了仿真模型的准确性.不同行驶工况的仿真结果显示采用本文提出的控制策略后,转向盘力矩显著提高,使驾驶员在低附着路面下的路感与正常高附着路面相同,可以有效防止驾驶员的误操作,提高车辆行驶安全性.  相似文献   

19.
基于矿用汽车载荷变化大、行驶环境多变、油门变化频繁的特点,依据重载爬坡和轻载下坡的典型工况,制定了重型矿用汽车多参数动力性换挡策略.利用函数叠加法建立康明斯QSL-FR91674型发动机全特性曲线,得到不同油门开度情况下发动机输出转速与输出转矩的表达式.根据发动机输出动力特性,计算得到3550型矿用汽车车速、油门开度和加速度三参数动力性换挡规律.再结合道路状况识别方法、车辆载荷、驾驶员操作意图,针对轻载下坡和重载爬坡工况,修正得到重型矿用汽车多参数动力性换挡规律.在Maplesim中建立换挡模型,通过仿真计算,得到修正前后车辆轻载下坡路况时挡位和车速变化曲线,后者避免了不必要的换挡,保证了车辆的动力性能.  相似文献   

20.
提出辅助制动系统进行汽车稳定性控制试验,运用Matlab/Simulink搭建辅助制动系统与实车系统的动力学关联仿真系统.以车辆运动轨迹和车辆质心侧偏角表征车辆状态,采用制动驱动集成稳定性控制策略,分别对实车系统和装有辅助制动系统的试验系统在不足转向、过多转向两种试验工况下稳定性控制性能进行分析和验证.进而以辅助制动系统验证车辆稳定性控制的有效性,在没有ESP控制或ESP控制系统失效时能有效辅助车辆行驶;在有ESP控制系统时行驶稳定性控制性能与实车系统在两种试验工况下均具有显著的一致性.同时,辅助制动系统作为汽车行驶稳定性控制试验装置其设计是科学的、可行的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号