首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 504 毫秒
1.
采用SBR反应器,以硝酸钾为氮源驯化活性污泥,筛选分离出两株好氧反硝化菌X1和X2进行生理特性、脱氮性能及N2O逸出量的研究.结果表明:两菌株均能在完全好氧的条件下(DO2mg/L),利用KNO3进行反硝化,总无机氮去除率分别为72.1%和78.9%;以KNO2为氮源时,菌株X1的总无机氮去除率仅为16%,而菌株X2的总无机氮去除率则达到73%;好氧反硝化过程中菌株X1的N2O逸出量高于菌株X2,这与硝酸盐的积累相关;碳源种类对菌株N2O逸出量有较大影响,琥珀酸钠做碳源时N2O逸出量最高.  相似文献   

2.
采用16S rDNA序列分析对菌株LZX301进行了初步鉴定,在150 r/m摇瓶好氧培养,探讨了碳源及盐度对菌株好氧反硝化特性的影响. 结果表明,该菌株16S rDNA序列与Pseudomonas stutzeri ATTC 17594(AY905607.1)等3株施氏假单胞菌序列相似度为99%,系统发育树分析显示菌株LZX301与P.stutzeri 的关系比同属的P.aeruginosa 和P.putida更近,因此初步确定菌株LZX301为Pseudomonas stutzeri. 培养液初始含7 mg/L亚硝酸盐和28 mg/L硝酸盐、C/N比为10:1条件下,以葡萄糖、乙酸钠和蔗糖为碳源时无机氮去除率分别为79.1%、67.9%和38.8%,氨氮积累量分别为1.978、1.224、0.727 mg/L. 以葡萄糖为唯一碳源时,在5、15、25等3个盐度下无机氮总去除率分别为73.2%、85.8%和78.7%,其中硝酸盐去除率分别为89.8%、86.1%和76.5%,亚硝酸盐去除率分别为36.2%、94.7%和96.4%,氨氮质量浓度分别为2.117、0.691、0.595 mg/L. 研究结果表明菌株LZX301在盐度5~25 范围内具有较强的好氧反硝化能力,以葡萄糖为碳源脱氮效果最好,对该菌株的应用具有指导意义.  相似文献   

3.
从螺旋升流式SUFR-UCT系统好氧反应器的活性污泥中分离得到一株好氧反硝化菌Y4,经16S rDNA系列相似性比较和系统发育分析初步鉴定属于Gordonia.sp(戈登氏菌属)。对菌株Y4反硝化能力进行试验研究,结果表明菌株Y4可以在好氧条件下有效去除培养液中的硝酸盐氮,在初始硝酸盐氮质量浓度为286 mg/L时,48 h脱氮效率可达61.2%。另外试验考察了溶解氧和温度对菌株Y4反硝化效果的影响,结果显示Y4有较高的氧耐受力,在DO为2~11.8 mg/L时都可保持较高的脱氮率;菌株Y4对温度适应性强,在30 ℃时脱氮效率高达90%。试验证明在螺旋升流式SUFR-UCT系统中存在有较好反硝化性能的好氧反硝化菌。  相似文献   

4.
好氧反硝化菌株X31的反硝化特性   总被引:25,自引:0,他引:25  
对好氧反硝化菌株X31在好氧条件下的反硝化特性进行了研究.结果表明,反硝化主要发生在菌体的对数生长期,氮气是反硝化过程的最终产物.在反硝化过程中,pH值呈逐渐上升趋势,而氧化还原电位(ORP)呈逐渐降低趋势.菌株X31能够以硝酸盐或亚硝酸盐和氧气为电子受体进行协同呼吸,并且亚硝酸盐呼吸要较硝酸盐呼吸更容易进行.硝酸盐呼吸和亚硝酸盐呼吸都具有较高的脱氮效率.和其他已报道的好氧反硝化茵相比,X31菌株有着更高的氧耐受浓度.当培养液中初始的氧化态氮质量浓度为150mg/L左右时,溶解氧值对X31菌株的反硝化效果没有显著的影响.  相似文献   

5.
为改善强碱环境下微生物脱氮效率低下的问题,从上海市稻田土壤中分离出一株具有强碱适应能力的好氧反硝化菌。经细胞形态学观察及16S rDNA分析,鉴定其为琼氏不动杆菌(Acinetobacter junii),并命名为琼氏不动杆菌5-2。结合单因素影响试验考察该菌株在不同环境条件下的脱氮效果,发现其在一定pH值(7.0~12.0)及盐质量浓度范围(10~30 g/L)内,均能保持较高的硝氮去除率(>90%)。在以乙酸钠为碳源、硝酸钾为氮源、碳氮质量比(m(C)/m(N))值为12、温度为35℃、转速为90 r/min、初始pH值为10.0、初始硝氮质量浓度为41.07 mg/L的条件下培养120 h后,该菌株对硝氮及总氮的去除率分别为97.83%及65.85%,同时,对该菌株好氧反硝化相关酶活性及基因进行检测。研究结果表明,琼氏不动杆菌5-2具有高效好氧反硝化能力,有望应用于处理实际含氮废水。  相似文献   

6.
从膜生物反应器中分离出一株异养型高效脱氮细菌,该菌为革兰氏阴性杆菌,命名为HNR.经16S rRNA测序,该菌株属于Acinetobactersp.菌属.以氯化铵为惟一氮源,探讨了不同碳源、pH值、温度及碳与氮质量分数之比w(C/N)对HNR菌株脱氮性能的影响.实验结果表明:以葡萄糖为碳源、pH值为8、温度为30℃、w(C/N)为10时,HNR具有最佳脱氮效果.在好氧条件下,当氨氮初始质量浓度为120 mg/L时,经过72 h的连续培养,其氨氮和总氮的去除率分别达92.5%和89.1%.通过气相色谱能检测到N2,但检测不到N2O.HNR不具有明显的好氧反硝化性能,表明HNR的脱氮途径可能与已报道过的异养硝化好氧反硝化脱氮途径有所不同.  相似文献   

7.
以污水厂初沉池出水作为研究对象,考察了常温(8~20℃)条件下,处理规模为5 m3/h的一体化厌氧/好氧生物反应器同步脱氮除磷的效果.试验中,系统脱氮始终存在同步硝化反硝化现象.通过低氧条件下亚硝酸盐的富集,系统进入稳定脱氮期.在稳定脱氮期,反应器出水亚硝酸盐平均累积率达82.52%,系统脱氮以亚硝酸盐型同步硝化反硝化的方式为主,实现了短程同步脱氮及磷和有机物的协同去除.TN,TP和COD平均去除率分别为77.4%,87.7%和90.4%.在该研究条件下,DO质量浓度的最佳控制范围是(0.25±0.10)mg/L.  相似文献   

8.
从活性污泥中分离出一株好氧耐盐反硝化菌YFX-6,耐盐度10%.经生理生化鉴定和16S rDNA测序,鉴定出菌株YFX-6属于Halomonas sp.考察了不同C/N质量浓度比、溶解氧、接种量、处理时间对菌株YFX-6在粮果实际废水中反硝化脱氮效果的研究.随着C/N质量浓度比的不断增加,菌株YFX-6的反硝化脱氮效果先逐渐增强后又减弱;随着溶解氧、处理时间和接种量的不断增加,菌株YFX-6的脱氮效果逐渐增强后趋于稳定.初始硝态氮质量浓度约为108.5 mg/L,氯化钠质量浓度为10 mg/L,C/N质量浓度比为8,溶解氧为3.5 mg/L,接种量所占体积分数为20%,处理16 h时,硝态氮去除率为98.69%.因此,筛选出的一株好养耐盐的异氧反硝化菌可以在上述条件下表现出良好的脱氮性能.  相似文献   

9.
从活性污泥中驯化、筛选并分离出1株能有效去除氨氮的菌株LX 1-3,经过形态学与分子生物学鉴定该菌株为副球菌属(Paracouccus sp),NCBI Gen Bank登录号为MH156598.对该菌株进行反硝化性能测试,结果表明该菌培养的最适条件为30℃,最适p H值为7. 0~7. 3,48 h后脱氮率为30. 7%.将该菌与1株高耐盐季也蒙毕赤酵母(KX447139)搭配,脱氮效率有显著提高.在好氧条件下,按照好氧反硝化菌与高效耐盐菌1∶1的接菌量配比接入污水中,30℃反应48 h后,氨氮去除率为86. 36%.该研究为提高污水脱氮处理效率提供了有效的方法.  相似文献   

10.
采集某城市污水处理厂的A/O工艺回流活性污泥作为污泥样品,利用SBR反应器,以硝酸盐为电子受体,在低碳源下,培养和驯化反硝化除磷菌。第一阶段采用厌氧/好氧/沉淀/排水的运行方式10周期,第二阶段采用厌氧/好氧/缺氧/好氧/沉淀/排水运行方式40周期。反硝化脱氮除磷性能的测试结果表明,经培养驯化得到的反硝化除磷菌处理低碳源废水,PO43--P的去除率达96%,出水浓度稳定在0.4 mg/L以下;NH4+-N去除率达78%,出水浓度稳定在3 mg/L以下;COD的去除率达86%,出水浓度稳定在20 mg/L以下;表明采用SBR反应器进行反硝化菌的培养驯化是可行的。  相似文献   

11.
在不同污染程度模拟水体中,利用沼泽红假单胞菌CQV97,在厌氧光照条件下,研究了水体中氨氮、硝态氮和亚硝态氮含量、菌体生物量和水体pH的变化关系.随时间延长,CQV97菌株对氨氮、硝态氮或亚硝态氮去除量增大,生物量增加,水体pH升高;随氨氮浓度提高,生物量增加,氨氮低于33.2mg/L能被完全去除,最大去除量达84.2mg/L,水体pH维持在9.2~9.4;随硝态氮浓度的升高,菌体生物量降低,浓度低于216.96mg/L能被完全去除,pH维持在9.1~9.3.随亚硝态氮浓度增加,菌体生长延滞期延长,生物量和pH升高幅度降低,浓度低于128.2mg/L能被完全去除.结果表明,CQV97菌株对氨氮、硝氮和亚硝氮具有良好的去除能力.  相似文献   

12.
好氧颗粒污泥膜生物反应器处理畜禽废水   总被引:2,自引:0,他引:2  
采用好氧颗粒污泥膜生物反应器处理畜禽废水,分别对COD、NH4 -N、NO2--N、NO3--N的去除效果和对膜通量的影响进行了研究。结果表明:在水力停留时间(HRT)为8h,进水COD浓度为600mg/L,NH4 -N浓度为40mg/L的条件下,出水COD、NH4 -N的浓度分别为46.6和4.8mg/L。NO2--N和NO3--N的去除率也可达90%以上。并且好氧颗粒污泥的加入减缓了膜的污染。  相似文献   

13.
依据烟气脱硫脱硝废水的主要特征配制模拟废水,研究不同硝态氮负荷对该废水反硝化过程中C和N的变化规律及脱氮效果的影响.间歇式批次实验结果表明:氮负荷为50~400 mg/L时,经过12 h后硝态氮去除率达到95%以上,反应过程中有10%~20%硝态氮转化为亚硝态氮.随着氮负荷的增加,T OC的消耗量也在增加,但降解率逐渐减小,去除每毫克硝态氮所需TOC依次为5.40、4.03、3.15、2.96、2.88、2.32和1.9 mg . TN的去除包括硝态氮、亚硝态氮和部分有机氮的去除,亚硝态氮完全去除时TN也基本去除.反应结束时,不同氮负荷下所需的△TOC/△TN为1.9~4.0.氮负荷从50 mg/L增加至400 mg/L ,容积反硝化速率由2.73 mg NO-3‐N /(L· h)增加至21.90 mg NO3-‐N /(L · h).△TOC/△TN与容积反硝化速率、氮负荷之间都呈良好的线性关系.  相似文献   

14.
初始pH值对废水反硝化脱氮的影响   总被引:2,自引:0,他引:2  
为探讨pH值对硝态氮反硝化体系的影响,设定初始pH范围为4-10,对反硝化过程中NO3-N、NO2-N、TN、TOC和△TOC/△TN的变化规律、反硝化动力学以及抑制机理进行研究. 结果发现:最适宜的反硝化pH值为8,过酸过碱都不利于反硝化过程的进行. 在pH=8时,反应时间最短,硝态氮的去除率为99.4%,TN的降解率为95.5%. 亚硝态氮积累量在pH〈7时小于1 mg/L;pH〉7时,随pH的增大而增大,最大积累率为22%. 硝态氮比反硝化速率在pH=8时最大,为2.52 mg NOx-N/(g MLVSS·h);亚硝态氮比反硝化速率在pH=7时最大,为1.66 mg NOx-N/(g MLVSS·h). 因此,反硝化最佳的pH值为7~8.  相似文献   

15.
针对新型脱氮工艺短程硝化–厌氧氨氧化(ANAMMOX)过程中亚硝氮难以稳定生成的难题,设计水解酸化+UASB+好氧氧化的处理工艺,应用于实际垃圾渗滤液处理工程.结果表明,当进水氨氮浓度为610~1900 mg/L,C/N比为1.8~3.5时,在进水量为100 m3/d,回流比为2:1,pH值为7.5~8.0,DO为2....  相似文献   

16.
考查碳源(醋酸钠、柠檬酸钠、葡萄糖、甘油、糖蜜、甲醇和蔗糖)、pH值和温度这3个条件对脱氮菌株HN18脱氮能力的影响.结果显示:以糖蜜作为碳源不但使菌株HN18对氨氮、硝酸盐氮的去除率高,亚硝酸盐氮的积累量少,而且价格低、原材料来源广泛,能得到较高的经济效益;菌株HN18生长和脱氮的最适pH值为7.5,最适温度为30℃.  相似文献   

17.
从膜生物反应器的活性污泥中分离出一株异养硝化细菌Alcaligenes faecalis strain NR,采用柠檬酸三钠为碳源、氯化铵为氮源研究其硝化性能,通过超声波破碎法对调控其硝化过程的2个关键酶--氨单加氧酶(AMO)和羟胺氧化酶(HAO)进行粗提,考察影响其提取率的主要因素(功率、工作与间歇时间、菌液浓度和总工作时间),并采用正交实验进行优化.结果表明:菌株NR具有产生亚硝酸盐和硝酸盐的能力;在30 °C和120 r/min的好氧条件下,当NH+4 N浓度为20、40和60 mg/L时,菌株NR在24 h内对NH+4 N的去除率分别为94.8%、93.5%和94.5%;粗酶提取的最佳工作条件为菌液光密度1.876,总工作时间600 s,工作和间歇时间4、6 s,功率300 W;在好氧条件下,测得AMO和HAO的酶比活力分别为0.011和0.016 U/mg protein.  相似文献   

18.
文章采用砂砾与土壤层构建垂直流人工湿地栽培芦苇和水花生,通过在同种基质上栽种相同数目的芦苇和水花生,以高质量浓度硝酸盐氮的配水进行浇灌,研究了这2种净水植物对饮用水中硝酸盐氮的脱除效果,并考察了净水效果较好的水花生的种植密度对其人工湿地脱氮的影响。研究表明,在人工湿地系统中,脱氮主要靠植物吸收,同时也存在硝化-反硝化途径;水花生和芦苇均能将饮用水中的硝酸盐氮有效脱除,在15d内,当进水硝酸盐氮质量浓度为50mg/L时,硝酸盐氮的去除率分别为94.0%和83.9%,当进水硝酸盐氮质量浓度为100mg/L时,硝酸盐氮的去除率分别达到96.8%和88%;相同条件下水花生去除硝酸盐氮的效果比芦苇更好;增加湿地植物的种植密度可获得更好的脱氮效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号