首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
针对周期间歇性脉冲负载对蓄电池循环寿命的影响,优化蓄电池的工作状态,引入蓄电池-超级电容器复合电源解决方案,充分发挥蓄电池比能量大和超级电容器比功率大的优势.选择蓄电池与超级电容器直接并联的被动式结构复合电源作为研究对象,并对被动式结构复合电源结构进行改进.在MATLAB仿真环境下,对应用于周期间歇性脉冲负载的蓄电池单一电源、被动式结构复合电源和改进型被动式结构复合电源进行对比仿真研究,同时搭建实验平台,进行对比实验研究.仿真和实验结果均表明,改进型被动式结构复合电源相比于其他两种电源,由于超级电容器对蓄电池功率的充分补偿,蓄电池放电过程得到优化,伴随着放电电流曲线更加平滑.  相似文献   

2.
为解决混合动力汽车单一电池能量存储系统循环寿命短、功率密度小等问题,引入蓄电池-超级电容器复合电源储能系统,充分发挥蓄电池比能量大和超级电容器比功率大的优点.分别对被动式、改进型被动式和主动式结构复合电源进行分析与研究,同时在MATLAB 7仿真环境下对这3种结构复合电源进行建模,对仿真结果进行对比分析.研究结果表明:复合电源的功率输出能力大大提高,蓄电池的放电过程得到了优化;主动式结构复合电源相对于被动式和改进型被动式结构,其效果更好.  相似文献   

3.
针对峰值电流影响蓄电池寿命问题,利用超级电容比功率高,不受大电流充放电影响等优势,与蓄电池组合成复合电源,通过在传统复合电源的工作模式中增加超级电容器组单独工作的改进工作模式,制定逻辑门限控制策略来解决这一问题,并在高级车辆仿真软件ADVISOR中进行仿真验证。结果证明该方法使流过蓄电池的电流幅值降低了36.6%,有效的延长蓄电池的循环使用寿命。  相似文献   

4.
分析了锂离子电池作为新能源汽车单一电源的局限性和超级电容作为辅助动力源的优势,设计了锂离子电池与超级电容的复合电源系统拓扑结构.然后基于NEDC(欧洲3/4排放标准试验工况)循环工况,结合锂离子电池和超级电容的性能参数对锂离子电池-超级电容复合电源进行参数匹配,利用超级电容器"削峰填谷"的作用来提高锂离子电池的性能和使用寿命.其后,基于整车循环工况试验建立容量衰减模型.最后,采用速度跟随式多目标优化的逻辑门限值控制策略,利用Matlab/Simulink进行仿真计算,验证了复合电源系统拓扑结构设计、容量衰减模型和控制策略的合理性.仿真结果表明,该模型可以将电池的寿命提高50%,使电池避免大电流的冲击,降低了整车使用成本.  相似文献   

5.
功率分流式混合动力汽车复合电源系统设计   总被引:1,自引:0,他引:1  
为解决功率分流式混合动力汽车单一蓄电池功率密度小、循环寿命短等问题,引入超级电容-蓄电池复合电源系统,利用AVL-Cruise/Simulink联合仿真平台搭建了功率分流式混合动力汽车的动力系统模型,在基于发动机最优工作曲线的能量管理控制策略中加入了复合电源功率分配策略,该功率分配策略能够缓冲起停发动机、制动工况下的电机工作时的大电流对电池的冲击,使电池尽可能工作在高效率区间来提高车辆的燃油经济性.在此基础上,对蓄电池组和超级电容进行了参数匹配,仿真结果表明蓄电池的放电过程得到了优化,所设计的复合电源系统能够提高车辆的燃油经济性.   相似文献   

6.
应用4.8VNI-MH蓄电池为单片机供电,利用PIC18F452单片机控制DC/DC升压为超级电容充电,组成复合电源。通过单片机控制开关电路给负载供电,从而可以提高蓄电池工作寿命。同时升压电路设计给出MATLAB仿真分析和实验结果。  相似文献   

7.
由于蓄电池的功率密度低、能量密度低,以蓄电池作为单一电源的纯电动汽车,动力性和续驶里程因此受到极大的限制.本文将超级电容引入到电动汽车的储能系统中,构建超级电容一蓄电池复合电源系统,利用超级电容高功率密度特性弥补蓄电池的不足.分析了在典型工况下的车辆需求功率对应的电流变化曲线,并根据储能系统的状态划分为单独驱动、共同驱动、预充电和再生制动共四种工作模式,在MATLAB/Simulink环境下建立了纯电动汽车动力系统的仿真模型,包括蓄电池模块、超级电容模块、功率分配模块和驱动模块,根据市区循环工况进行了仿真测试,结果表明采用超级电容一蓄电池储能系统能发挥其高能量密度和高功率密度特性,从而提高车辆的动力性能,使能量利用率提高了近17%.  相似文献   

8.
针对新能源汽车用单一电源的使用寿命短、不能同时满足高能量密度和高功率密度需求等问题,提出一种蓄电池超级电容器混合电源方案。该方案充分发挥了超级电容器快速充放电的特性,采用2种电源直接并联,并通过一种双向功率变换器变压向负载供电,可同时实现充足的能量供应和功率需求。建立了MATLAB/SIMULINK仿真模型,并搭建小功率实验平台,仿真及实验结果表明,混合电源系统具有良好的电能输出响应特性,能量回收快,可减少蓄电池的供电工况,从而延长其使用寿命。  相似文献   

9.
针对传统混合动力汽车复合电源中蓄电池和超级电容的功率平衡问题,提出了一种复合电源能量模糊控制分配系统。该系统设计上通过针对蓄电池的内阻随温度变化和超级电容的本身的充放电特性来优化控制器结构。通过混合动力汽车本身的工作模式来进行分析,模糊控制器使超级电容可以自动变化参考电压使超级电容器输出需求功率中的峰值功率,蓄电池则承担其平均功率。使混合动力汽车在复杂的驾驶环境时,储能系统能够稳定的提供汽车所需要的能量。仿真结果表明该方法可以有效的稳定复合电源中蓄电池的温度使其能够在汽车的各个运行过程中稳定工作的。  相似文献   

10.
光伏微电网有离网与并网2种工作模式.在离网模式下由于负荷及可再生能源的功率变化使得直流母线电压产生波动,在并网模式下会因输入功率变动以及非线性负载产生的低次谐波等使并网电流脉动较大,影响电能质量.本文利用超级电容器和蓄电池组2种储能组件构成微电网混合储能方案,使微电网在离网运行时利用超级电容器的快速响应来补偿瞬态功率,...  相似文献   

11.
大功率混合储能装置控制策略研究   总被引:1,自引:0,他引:1  
针对电磁发射装置在连发时其储能电源对电网瞬时功率需求极大、一般电网难以承受的问题,提出了一种新的混合储能方式及其控制策略。该方式将蓄电池与脉冲电容器进行复合储能,采用多组蓄电池串联充电的新型拓扑结构,通过调整电路参数和时序触发控制策略,可以精确控制在不同时刻将多组蓄电池逐步接入电路对脉冲电容器充电,实现了对脉冲电容器的近似恒流充电,使脉冲电容器快速、高效地达到所要求的电压值。仿真与试验结果表明,该混合储能方式合理可行,在时序触发的控制策略下可实现在较短时间内将蓄电池能量传递给脉冲电容器,使功率逐级增大,从而降低网侧的瞬时功率需求。  相似文献   

12.
电动汽车能量管理系统的研究   总被引:2,自引:0,他引:2  
针对电动客车行驶工况对能量的需求,对动力电池和超级电容器电动客车的能量管理系统的控制策略进行了研究.采用模糊控制理论建立了控制策略模型,并用Matlab Simulink编程实现了该仿真系统.仿真结果表明:采用速度控制策略和电流约束控制策略后,在相同条件下车辆的动力性能得到了提高,可避免动力电池的过电流充放电.对安装了超级电容器和未安装超级电容器的电动客车分别在市区和市郊循环工况下计算平均比能耗.结果表明:超级电容器在市区循环中能够降低能耗.通过对电动低地板公交客车场地试验,验证了仿真得出的结论.  相似文献   

13.
以动力电池—超级电容复合电源结构的纯电动汽车为研究对象,基于模糊控制理论设计能量管理策略进行功率分配.以某电动汽车为原型,应用Cruise软件搭建复合电源电动汽车整车模型,在Simulink中开发能量管理系统,基于NEDC循环工况进行联合仿真.仿真结果表明,模糊控制分配策略能够很好发挥超级电容"削峰填谷"的作用,优化了双能量源电源系统的工作效率,满足车辆动力性能的同时,明显提升动力电池的荷电状态.基于模糊控制的能量管理策略,对电池寿命提高和车辆行驶里程提升均取得良好控制效果.  相似文献   

14.
风电功率具有波动性,不利于电力系统正常运行,因此构建了由两组超级电容器和两组蓄电池组成的双配置混合储能系统,用以平抑波动。两组超级电容器根据实时荷电状态交替补偿高频正、负功率波动,分别处于充、放电状态;当任意一组达到荷电状态上限约束值或下限约束值,则同时切换两组超级电容器的充放电状态,保证其处于不同的工作状态。两组蓄电池采用同样的控制策略,用于补偿低频正、负功率波动。最后,对某风电场历史数据进行仿真分析,结果表明,该方案可有效提高储能装置利用效率,降低其容量配置;并且大幅度降低了储能装置充放电切换次数,提高了循环使用寿命。  相似文献   

15.
为研究锂电池与超级电容复合电源系统配置和电动汽车性能的关系,提出了单因素变化敏感度分析方法.建立了基于功率跟随式能量控制策略的锂电池与超级电容复合电源系统仿真模型,研究复合电源系统配置变化对电动汽车性能的影响.仿真结果表明:锂电池串联数量对电动汽车性能影响很小,敏感度在-0.041~0.099之间;超级电容串、并联数量对电动汽车最高车速影响较大,敏感度在0.180~0.277之间;超级电容串联数量对电动汽车加速性能影响最大,敏感度在-0.862~-0.650之间;超级电容并联数量对加速性能影响较大,敏感度在-0.289~-0.154之间;复合电源系统配置对能耗影响很小,敏感度在-0.041~0.057之间.实验测试结果验证了结论的有效性,可为改善电动汽车性能提供设计依据.  相似文献   

16.
微电网的建模仿真中,分布式电源种类多种多样且输出特性各异,由传统的简易微电源模型所构成的微电网平台很难对现今微电网的研究进行仿真.针对以上情况,搭建了包含分布式电源为光伏并网逆变器,PCS1(带超级电容器)以及PCS2(带蓄电池)的微电网系统并对其工作过程进行了仿真,为进一步研究微电网提供了良好的仿真平台.  相似文献   

17.
 介绍新型电化学储能器件“超级电容池”并回顾其2018年的基础研究进展。作为蓄电池和超级电容器的内在结合型电化学储能器件,超级电容池较好地结合了前者高储能密度和后者可快速充放电、长循环寿命的特性,可以在移动和固定储能应用中发挥更大作用。  相似文献   

18.
超级电容器寿命长、安全性高,并可以实现快速充放电,是化学电源研究的热点之一。文章通过简单的化学原位聚合法将聚苯胺(polyaniline,PANI)与碳纳米管(carbon nanotubes,CNTs)进行复合,得到聚苯胺纳米管(PANI-CNTs)复合材料。利用场发射扫描电子显微镜(field emission scanning electron microscope, FESEM)对其形貌和结构进行表征。循环伏安(cyclic voltammetry,CV)曲线、恒电流充放电(galvanostatic charge-discharge, GCD)曲线和循环寿命测试结果表明,纳米复合电极材料在三电极体系中,电流密度为1 A/g时,比电容高达690 F/g,3 000次循环后仍保持初始电容80%,在组装成柔性器件后,保留了优异的电化学性能,并展现出卓越的柔性机械性能。  相似文献   

19.
蓄电池-超级电容器混合储能系统既可充分应用功率型储能器件的物理特性,又可优化蓄电池的充放电过程,是储能技术未来发展方向之一。本研究中提出了一种主从结构双重解耦控制策略,利用功率前馈解除了母线电压与扰动输入间的耦合关系,也抑制了耦合扰动输入对超级电容端电压的影响,将端电压有效维持在一定范围,解决了传统控制策略下超级电容的过充过放问题,简化了控制过程;而且在保证微电网稳定运行的同时,使得蓄电池的充放电电流变化平滑,降低其变化率,延长其使用寿命,并提高了微电网孤岛运行储能系统运行的可靠性。最后通过仿真分析,验证了所提控制策略的正确性。  相似文献   

20.
采用无电镀方法在硅微通道板上制备镍,然后进一步通过化学液相沉积法,在其上面制备了氢氧化镍纳米晶体,获得了一种具有独特三维结构的Si-MCP/Ni/Ni(OH)2超级电容器.研究发现,制得的氢氧化镍晶体由许多纳米薄片组成,XRD图谱显示其具备α和β两种晶型.通过循环伏安和计时电位法对该超级电容器进行了性能测试.在放电电流为10 mA时,样品获得最大放电比容量,为2 150 F/g.在多次循环测试中,样品的稳定性良好.随着退火温度的升高,样品的容量下降.研究发现氢氧化镍的表面积减小是导致容量衰减的主要原因.由于该电容器有着巨大的比容量和良好的稳定性,该三维结构有望应用于二次电源和相关器件中.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号