首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
利用K(a)hler流形的有关理论知识,证明了3个结论:局部共形K(a)hler流形为K(a)hler流形的若干等价条件;满足一定条件的曲率张量的局部共形K(a)hler流形一定是K(a)hler流形;判定K(a)hler流形的两种具体方法.  相似文献   

2.
研究完备非紧的Quaternionic K(a)hler流形且满足权Poincare'不等式.在权函数作为Ricci曲率下界时,给出了Quaternionic K(a)hler流形的消灭定理.推广了Lam在完备非紧的quaternionic K(a)hler流形上的结果.  相似文献   

3.
研究了在nearly Khler流形上某种处处非零Killing向量场的存在性与流形的拓扑和几何之间的联系.并且得到了下面的主要结论及其推论:设(M2n,g,J)是一个2n维的近复流形.如果在M上存在一个处处非零的Killing向量场ξ,使得ξ*∧Jξ*是闭2次形式,则M局部微分同胚于M1×M2,其中M1和M2分别是分布V∶=span{ξ,Jξ}和分布H:=span{ξ,Jξ}⊥的极大积分子流形.  相似文献   

4.
研究了在Einstein流形上存在某种非平凡Killing向量场的必要条件;同时给出了两个例子:1)标准球S6上的基本向量场;2)S2×S3上的单位Killing向量场.  相似文献   

5.
利用Schwarz导数定义及导算子的线性特征,获得了Schwarz导数的一个复合性质,并以注解的方式给出了两种推论.  相似文献   

6.
赵成兵  阮其华 《江西科学》2005,23(3):197-198,206
主要研究kahler流形上所具有多重次调和穷竭函数的表示,利用poincare-lelong方程和η函数的性质来构造满足流形上的端E的条件的多重次调和穷竭函数。  相似文献   

7.
在Hermite流形上引入一个δ张量,指出其与Kaehler形式的内在联系,应用于研究Kaehler流形上保角向量场和Riemann联络的关系.并给出Kaehler流形判定定理的内蕴证明.  相似文献   

8.
本文仿照文献[1]和[2]的作法,对于四元数kahler流形中的浸入曲面引入了kahler角的概念,同时讨论kahler角是常数的情形。有关四元数kahler流形中的复子流形的讨论可见文献[3]等.设M是一个定向的2维黎曼流形,(N,V,g)是四元数kahler流形,x:M→N是等距浸入.  相似文献   

9.
利用Khler流形的有关理论知识,证明了3个结论:局部共形Khler流形为Khler流形的若干等价条件;满足一定条件的曲率张量的局部共形Khler流形一定是Khler流形;判定Khler流形的两种具体方法。  相似文献   

10.
本文推广了《关于无穷小共圆运动几个定理》(罗崇善)的若干结果,得到:若一个拟共形平坦(拟共形半对称或拟共形循环)流形M~n(n≥4)存在一个共圆Killing向量场,则M~n是常曲率流形,或拟常曲率流形或ρ的梯度是M~n的平行向量场。  相似文献   

11.
现得到完备非紧且Ricci曲率非负有界n维(m=2n)的Kahler流形M上的一个单值化定理.如果它满足如下条件:①kr(x0)≥-c/1+r2;②sobolev不等式‖f‖p≤C0‖▽f‖q,A↓f∈C0^∞(M),1≤q≤n,1/p=1/q-1/m;③∫M R^nic〈∞,那么,M是双全纯与一个拟射影簇.  相似文献   

12.
在辛流形(M,ω)的向量场李代数C∞(M,TM)中定义了一种算子P:C∞(M,TM)×C∞(M,TM)→C∞(M,TM),得到了向量场是辛向量场的一个简明的充要条件,同时还得到了一些有关辛向量场与Harmilton向量场的恒等式.  相似文献   

13.
设(M,g)为紧致仿射K(a)hler流形,仿射K(a) hler度量g=∑fijdxidxj.作者证明了若f满足Δlog(det(fij ))=0及 Ricci曲率半正定,则M是Rn/Γ,其中Γ为Rn上离散等距子群.进一步,对光滑函数h,作者考虑M上的变分问题,其E uler-Lagrange方程为Δlog(det(fij))=4h(det(fij))-(1)/(2 ),通过解这个四阶方程的一类边值问题,构造了定义在R n上的欧氏完备仿射K(a)hler流形.  相似文献   

14.
研究K(a)hler-Einstein流形M上的Rastogi联络(△)-,证明了(△)-的拟共形曲率张量场如果是循环的或平行的,则M分别为拟共形循环的或拟共形对称的,推广了Rastogi S C 等人的主要结果.  相似文献   

15.
讨论了Riemann流形上指标形式与共轭点的关系;证明了具非负Ricci曲率的无共轭点Kahler流形上的典型线丛之曲率之零。  相似文献   

16.
首先构造了利用无限循环群作用所形成的一类环面,此循环群异于环面的常见构造群;然后构造了此类环面的整体向量场;最后构造了此类环面的复结构和与此复结构相融的K(a)hler度量,并利用此度量表示,Loewner环不等式和Loewner环收缩缺陷不等式给出了所构造环面中部分环面面积的下界.  相似文献   

17.
用Rastogi方法研究K(a)ehler-Einstein流形M上的Rastogi联络(-▽),证明了(-▽)的拟共形曲率张量为0时,M拟共形平坦,进一步推广了Rastogi与胡聪娥的主要结果.  相似文献   

18.
设M是紧的定向曲面,x:M→CP2是常K(a)hler角的浸入,给出了x是正自旋扭曲全纯浸入的充要条件和负自旋扭曲全纯浸入的必要条件.  相似文献   

19.
本文研究了一般拟常曲率空间N的紧可定向子流形M上的调和向量场,射影Killing向量场以及保形Killing向量场。给出了M上任意向量场所满足的两个积分公式,并且运用这两个积分公式讨论了M上的调和向量场、射影Killing向量场,保形Killing向量场的平行性、不存在性与M的主曲率之间的关系。同时在N为一种特殊的拟常曲率空间即S—流形的假设下又得出了进一步的结论。本文中主要结果是Shetty,D.J.在常曲率空间子流形上类似结果的推广。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号