首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
利用ProCAST软件对2400 mm×400 mm宽厚板坯结晶器建立三维动态模型,采用移动边界法实现结晶器内流场、温度场及应力场的耦合模拟.结果表明:考虑凝固坯壳的影响,下回流区位置向铸坯中心靠拢,真实反映了钢液在连铸结晶器内的流动情况.自由液面的钢液从窄面流向水口,速度先增大后减小,距水口约0.7 m处,出现最大表面流速,约为0.21 m· s-1.结晶器出口坯壳窄面中心厚度最小且由中心向两侧逐渐增大,最小厚度约为10.4 mm;受流股冲击影响较弱的宽面坯壳与窄面相比生长更均匀,宽面偏角部和中心的坯壳厚度分别为18.9 mm和27.6 mm.铸坯坯壳应力变化趋势与温度基本保持一致,表明初凝坯壳应力主要是热应力.结晶器内铸坯宽窄面上的等效应力均沿着结晶器高度下降方向呈增大趋势,铸坯角部、宽面中心及窄面中心位置的最大应力各约为200、100和25 MPa.  相似文献   

2.
结晶器内连铸坯凝固过程的有限元数值模拟   总被引:5,自引:3,他引:5  
建立了结晶器内连铸坯凝固过程的有限元数学模型,在坯壳面表面边界条件中引入与气隙相关的传热模型修正平均热流量方程,研究了铸坯角部气隙对坯壳凝固行为的影响,模拟结果表明,铸坯角部形成的气隙流量显著地长低了坯壳表面的换热,使得铸坯偏角区成的为热节区,此热节区是铸坯凹陷,裂纹等缺陷乃至漏钢事故发生的诱因。  相似文献   

3.
通过建立结晶器二维非稳态传热模型,在考虑气隙及角部圆弧对铸坯凝固过程影响的基础上,研究结晶器冷却强度对铸坯初始凝固均匀性影响的规律.结果表明,在结晶器内初始凝固区域,铸坯近角部的坯壳厚度小于角部和表面中心处的坯壳厚度;结晶器冷却强度降低,坯壳厚度变薄,但周向均匀性得到改善.  相似文献   

4.
应用混合Langrangian和Eulerian法(MiLE)实现了结晶器中GCr15钢大方坯温度场、应力场及流场的动态模拟,模拟结果与实际生产铸坯吻合.铸坯坯壳角部的温度高于中部,铸坯表面从上到下的温度总体呈下降趋势,且等温区间与流场变化具有一定的相似性.铸坯坯壳中部厚度约为17.5 mm,角部厚度约为13.2 mm.凝固坯壳内的应力主要是热应力.坯壳出结晶器时,坯壳外表面处于压缩状态,凝固前沿为完全拉伸状态.有效应变从铸坯外表面到凝固前沿逐渐增大.钢液在前进过程中不断扩张,流速不断降低,当流股到达一定深度后,形成左右对称向上的两个回流,和一对由凝固面一侧向下而由中心向上流动的回流区.  相似文献   

5.
根据国内某厂宽板坯连铸工艺条件,利用二维非稳态传热模型及喷嘴冷却特性,分析不同因素对铸坯角部复热的影响规律.结果表明,铸坯断面宽度为1 800 mm时,喷嘴间距选为450mm,铸坯宽面表面温差小,有利于实现铸坯的角部复热;喷嘴间距一定,随二冷区比水量的减小及铸坯宽面外侧两喷嘴冷却水量的降低, 铸坯角部复热效果更好;较小的角部凝固坯壳厚度有利于减小内部高温钢液蓄含的热量向铸坯角部传递的阻力,改善角部复热效果.  相似文献   

6.
应用数值模拟方法,建立CSP漏斗型结晶器内钢液流动及凝固传热耦合模型。针对结晶器内铸坯角部受到强冷的特点,对结晶器内热流密度采用修正方程进行计算,分析热流密度修正系数对铸坯凝固坯壳表面温度计算精度的影响。通过比较不同拉坯速率下结晶器内钢液凝固的特点,研究凝固坯壳对结晶器内钢液流动行为的影响。结果表明,采用热流密度修正系数后,铸坯凝固坯壳角部温度的计算值与实际情况更相符;提高拉坯速率可使铸坯凝固坯壳厚度减小;拉坯速率较大时凝固坯壳厚度随铸坯距弯月面距离的增大基本呈线性增长,拉坯速率为3m/min时,凝固坯壳在生长过程中厚度的增长有短暂的停滞现象;凝固坯壳对钢液流动的影响较大,主要是由钢液有效流动区域减少及两相区额外动量阻损造成的。  相似文献   

7.
为了预测结晶器出口铸坯坯壳的厚度与均匀性,考虑气隙对连铸坯的边界换热条件的影响,建立了铸坯传热凝固有限元计算分析的数学模型。采用热通量系数法反映实际的坯壳角部凝固特征现象。在方坯结果验证基础上,通过对新型H型连铸坯凝固过程进行模拟,计算得出了结晶器出口处坯壳的厚度。计算结果表明:H型铸坯坯壳的厚度随着拉速的增加而变小;铸坯在腹板和翼板交接处最薄,应适当增加水量,以保证坯壳在结晶器出口处具有足够的厚度。  相似文献   

8.
基于流场和温度场的计算,对断面为1 780 mm×225 mm的板坯结晶器进行数值模拟,考虑3种不同水口条件下,钢液流动对凝固壳的冲刷,计算出凝固壳厚度的三维分布特征,并与二维切片法的计算结果进行了对比。结果表明:有水口时结晶器角部位置凝固壳最大值为约45mm,宽面和窄面中心凝固厚度壳最大值为24mm,分别比无水口条件下凝固壳薄1~2 mm;钢液的扩散会使凝固壳在距离结晶器角部300mm和顶部400mm的位置形成约深度2.5mm的凹陷;同时钢液会冲刷整个结晶器窄面的凝固壳,在窄面中心最严重;对比不同的水口,凸底水口冲刷最大,凹底最小。  相似文献   

9.
用方形水冷铜型和铸铁型测试铸件-铸型界面气隙形成的时间;研究铝液压头高度H和铸型形状及表面粗糙度对气隙形成的影响。形成气隙需要的时间和坯壳厚度随 H的增加而增加;在铸铁型中,当 H>200mm时,二者随 H变化不大。在方形水冷铜型中,由于气隙的作用,坯壳表面角部和中部的温差由负到正,最后又变为负值;角部附近和中部的壳厚比也从大到小,然后又变大。铸型内表面的粗糙度影响形成气隙的时间,但不影响形成气隙时的壳厚。  相似文献   

10.
圆坯连铸结晶器温度场模拟与坯壳厚度预测   总被引:1,自引:0,他引:1  
基于连铸圆坯结晶器温度与热流实测数据,建立了连铸圆坯凝固的三维传热模型,计算出结晶器和铸坯的温度场,并得到铸坯的固相率与坯壳厚度分布情况.温度计算结果与实测数据符合较好,表明此数学模型能够较为准确地反映实际情况.讨论了拉速、浇注温度等因素对坯壳厚度的影响,并对利用模型计算与经验公式计算得到的坯壳厚度进行了对比.  相似文献   

11.
身矩形槽道内的气体滑移流动和传热分析   总被引:1,自引:0,他引:1       下载免费PDF全文
分析了微矩形槽道内的不可气体在速度滑移和温度跳跃区的流动和传热过程。在分析模型中,假定矩形槽道底面定热流加热,其余三面绝热,流动和换热均匀为充分发展,且处于滑移流动区。给出了截面上速度分布和温度分布的分析解,讨论了阻力持性和换热特性,并与实验结果作了比较。二者的吻合程序表明,在一定的Knudsen数范围内,传统的Navier-Stokes方程和能量方程在考虑了速度滑移和温度跳跃影响后可以描述微矩形槽道内的气体流动和传热过程。  相似文献   

12.
矩形微通道内滑移区气体流动换热的数值模拟   总被引:3,自引:0,他引:3  
在等壁温边界条件下对矩形微细通道速度滑移区的对流换热进行了二维数值模拟、在一阶速度滑移和温度跳跃的边界条件下,计算出了通道内的速度和温度以及压力分布。比较了不同克努森数Kn对于滑移速度和跳跃温度的影响。结果表明,由于气体的稀薄性,压力呈现更加线性化减小的趋势,随着Kn的增加,通道入口与出口处的滑移速度和跳跃温度至现增加的趋势。在通道入口附近,气流速度和温度变化剧烈,而在出口处截面平均流速和温度随加的增加而降低.  相似文献   

13.
针对矩形微通道进出口压降大、温度分布不均匀,以及分形微通道受到分形维数和分支数限制适用范围较窄的问题,结合矩形微通道和分形微通道的优势设计一种分-合式微通道散热器。使用Fluent软件对散热过程进行数值模拟,研究微通道内分支倾斜角度变化对流动和传热性能的影响。结果表明,在100 W/cm2的热流密度下,Re为970、分支倾斜角度为90°时,分-合式微通道平均温度降低了11.9 K,最高温度降低了14.2 K,Nu增加了85.7%,整体传热性能(PEC)也最佳,达到1.44。分支的引入可以增加微通道内部换热面积,同时形成新的边界层,在分支内侧产生漩涡,有效提高了微通道散热器的传热性能,为微通道的优化设计提供了新的理论依据。  相似文献   

14.
动载轴承的非稳态热流体动力润滑分析   总被引:8,自引:0,他引:8  
为了考察热效应对动载轴承润滑性能的影响,建立了动载轴承热流体动力润滑分析的数学模型,联立求解了广义雷诺方程、能量方程、固体热传导方程以及载荷平衡方程,得出了动载轴承的油膜压力分布、油膜温度场分布、轴心轨迹、流量和功耗。在求解过程中针对油膜和轴瓦温度场的时变性的不同,提出对它们分别进行非稳态和准稳态数值求解的方法。另外还采用了不同的温度边界条件进行计算。结果表明:在动载荷作用下,轴承的油膜压力、温度场、轴心轨迹、流量和功耗也随时间作相应的变化,不同的温度边界条件对计算结果有着显著的影响  相似文献   

15.
考虑多孔介质中垂直拉伸板引起的分数阶Maxwell杂化纳米流体流动与传热,并引入二阶滑移边界条件。利用分数阶剪应力和分数阶Fourier定律构建边界层控制方程,采用有限差分结合L1算法进行数值求解。图示并详细讨论分数导数参数变化时,各物理参数对该流体流动和传热影响的灵敏度变化。结果表明,Darcy数和滑移参数对平均表面摩擦系数的影响,以及滑移参数对平均Nusselt数的影响,对速度分数导数比对温度分数导数更敏感。Darcy数对平均Nusselt数的影响对温度分数导数敏感,但几乎与速度分数导数无关。此外,一阶滑移参数比二阶滑移参数对流动和传热的影响更大。  相似文献   

16.
以分析风挡结雾过程的瞬态特性为目标,首先建立了风挡温度控制方程和定解条件,然后分析了座舱湿度的计算方法以及单个雾滴与其周围环境的换热特征,最后确定了风挡内表面附近湿空气的凝结速率。以上瞬态模型能够对飞机风挡结雾过程的数值模拟提供有效的理论依据。  相似文献   

17.
将非牛顿流体的动量方程、能量方程和幂律流体的本构方程相结合 ,建立了幂律流体管内流动和换热充分发展时的对流换热控制方程组 ,并在恒热流和恒壁温边界条件下分别对方程组进行了求解 ,得到了两种不同边界条件下的温度分布和无量纲对流换热系数 (Nu数 )的表达式。结果表明 ,幂律流体的流变指数对流体流动的影响要大于对换热的影响 ;在恒热流边界条件下 ,幂律流体的温度在管内沿轴向呈线性分布 ;而在恒壁温条件下 ,其截面平均温度沿轴向呈指数规律变化。幂律流体的无量纲对流换热系数与幂律流体的流变指数有关 ,并且在两种边界条件下 ,均随着流变指数的增加而减小  相似文献   

18.
带60°肋和出流孔的矩形通道端壁换热特性研究   总被引:4,自引:1,他引:3  
根据相似理论放大的模型,采用热色液晶瞬态测量技术研究带有60°肋和单排溢流孔的内流通道的换热特性,分析主流雷诺数和出流比对壁面对流换热的影响规律.矩形内流通道进口雷诺数变化范围是20 000~80 000,通道出流比变化范围是0~0.6.实验结果表明:出流作用使出流孔附近区域的换热得到了强化;主流雷诺数一定时,随出流比的提高,壁面平均换热系数和增强系数都先略微增大后逐渐减小;出流比一定时,随雷诺数的增加,端壁平均换热系数基本呈线性增加,而换热增强系数则减小.  相似文献   

19.
边界条件对滑移区气体微槽流动和传热的影响   总被引:2,自引:0,他引:2  
针对不同的边界条件,分析了微矩形槽道内不可压缩性气体在速度滑移和温度跳跃区的流动和换热过程。在分析模型中,假定矩形槽道底面定热流加热,其余3个面绝热。分别在一阶、二阶滑移及速度滑移和温度跳跃相互耦合的边界条件下给出了截面上速度和温度分布的数值解,讨论了阻力和换热特性,并与Arkilic等的实验结果进行了比较。结果表明:在相同的条件下,耦合的阻力系数最小,二阶边界次之,一阶边界最大;速度滑移和温度跳跃对换热系数具有相反的影响趋势;耦合模型更接近实验结果,其次为二阶滑移模型,一阶滑移模型的偏差最大;在不考虑可压缩性因素时,滑移边界条件的阶数对阻力系数的影响较大,对换热系统的影响不是十分明显。  相似文献   

20.
脉冲热流作用下球体内的非傅立叶热传导   总被引:1,自引:0,他引:1  
分析了球形物体表面遭受一随时间变化脉冲热流时的双曲型非傅立叶热传导问题.给出了此类超急速传热情形下的热传导方程、边界条件及初始条件的无量纲形式,采用Laplace变换技术,求得了任意时刻球体内部温度分布的解析解.作为算例,计算了方波脉冲这类随时间变化热流作用下球体内的温度变化,结果表明,该类超急速热传导问题与常规的傅立叶热传导相比具有明显不同的特征  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号