首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 355 毫秒
1.
针对制动工况中的汽车,建立9自由度车辆动力学模型,并基于车辆动力学模型,采用比例-积分(PI)稳定性控制逻辑算法对车辆的行驶状况及运动姿态进行控制.最后,利用CarSim和MATLAB/Simulink联合仿真平台,结合低附着系数路面和对开路面的紧急制动工况进行离线仿真.仿真结果表明:采用稳定性控制逻辑算法可以改善车辆的纵向运动状态,有效地抑制车辆的侧向运动,有助于提高车辆的稳定性.  相似文献   

2.
针对线控制动系统单轮制动失效时车辆制动稳定性控制问题,提出了协同线控转向和线控制动系统的制动力优化分配控制策略.为了最大程度满足驾驶员的制动期望,采用二次规划方法初始分配剩余三轮制动力;为防止车辆因制动力重构产生横摆或跑偏,采用滑模控制方法设计前轮转向控制器;考虑前轮转向对轮胎纵向力的影响,建立基于魔术公式的轮胎侧向力数学模型,基于二次规划方法实时优化轮胎在侧偏纵滑工况下的制动力.联合Simulink和Carsim进行了仿真实验分析,结果显示车辆的横摆角速度快速收敛为0,侧向跑偏距离均小于0.1 m.结果验证了本文提出的制动力优化分配控制策略在不同的制动工况下均能提高单轮制动失效车辆的制动稳定性.  相似文献   

3.
对汽车ABS制动系统进行了虚拟样机仿真研究.采用滑移率为控制参数,应用MATLAB与ADAMS联合仿真,实现了ABS的实时控制功能.在同一虚拟样机模型的基础上,进行了车速与制动距离的仿真,结果表明,汽车制动前的速度与制动距离呈二次函数关系.讨论了三、四控制通道控制对汽车的制动方向稳定性和制动距离的影响:紧急制动时,四通道独立进行制动压力控制的ABS系统可获得最短的制动距离,而三通道前轮独立控制后轮低选控制的ABS系统制动距离相对来说要大;但在不对称路面上紧急制动时,三通道控制的汽车偏转力矩较小,方向稳定性更好.  相似文献   

4.
为了使电动汽车在制动时既能充分回收制动能量,又能兼顾制动稳定性,针对四轮轮毂电动机驱动电动汽车,提出了一种基于路面识别的复合制动与ABS集成控制策略.以单轮制动模型为研究对象,利用Lagrange插值法估算当前路面的峰值附着系数和最优滑移率;通过比较目标制动强度与峰值附着系数,将制动工况分为常规制动和防抱死制动;针对常规制动向防抱死制动过渡的工况,通过一种在ABS触发前合理减少再生制动的方法,避免直接撤销再生制动带来的ABS频繁退出和启动.在MATLAB/Simulink环境下建立了仿真模型,仿真结果表明:路面识别算法识别准确度较高;复合制动与ABS集成控制策略能够合理地分配再生制动力与液压制动力,实现车轮的防抱死控制.  相似文献   

5.
提出一种制动防抱死系统(ABS)与主动前轮转向(AFS)系统的集成控制算法.ABS采用逻辑门限值控制算法,以车轮的角加速度为主要门限、滑移率为辅助门限.AFS采用基于二自由度车辆模型建立的横摆力矩补偿前馈控制和滑模反馈控制相结合的复合控制算法.采用8自由度车辆模型验证所提出的控制算法,该模型包含“Magic Formula”轮胎模型和基于单点预瞄的驾驶员模型.在Matlab/Simulink中通过对开路面的直线制动工况和定圆弯道制动工况下的仿真来评价集成控制算法.仿真结果表明:在对开路面上ABS与AFS的集成控制能够有效地缩短制动距离,提高车辆制动过程的方向稳定性.  相似文献   

6.
针对分布式电驱动汽车在复杂路面紧急制动时引起车轮突然滑转或抱死而导致的车辆失去转向能力甚至甩尾的问题,提出了一种考虑车辆侧向稳定性的电液复合制动滑移率控制策略。滑移率控制采用了滑模极值搜索算法,基于分层结构,即上层为期望制动力矩计算模块,中层为考虑执行器带宽的动态控制分配模块,下层为电液复合执行器,同时还考虑了位置和速率约束且应用主动前轮转向(AFS)系统补偿侧向稳定性。基于MATLAB/Simulink建立了7自由度整车模型,在分离路面典型制动工况下对控制算法进行了验证。结果表明:所提控制策略可以有效减小制动距离,保证车辆侧向稳定性;滑移率控制器可以自适应于路面附着系数的变化。  相似文献   

7.
针对装有线控机械制动系统的车辆的制动稳定性控制问题,在MATLAB/Simulink中建立七自由度车辆动力学模型及线控机械制动系统模型,提出一种兼顾制动效能与横摆稳定性协调控制的车辆制动力分配策略;该策略采用分层控制结构,运用滑模控制和模糊控制理论设计顶层控制器,主要负责纵向目标制动力及横向目标横摆力矩的求取;底层控制器运用二次规划方法,以轮胎利用率为目标优化函数,使用有效集算法求解目标函数,在车辆制动时完成目标纵向力与横摆力矩协调分配,进而达到横、纵向协调最优控制的目的;运用MATLAB/Simulink与Carsim在对开路面上进行改变制动意图的工况联合仿真。结果表明,所提出的车辆制动力分配策略能够在保证车辆制动效能的前提下同时满足车辆横摆稳定性控制要求。  相似文献   

8.
针对分布式电驱动汽车,以实现车辆主动安全性同时兼顾制动能量回收为目标,提出一种主动前轮转向(AFS)与电液复合制动集成的控制策略.AFS控制器采用滑模变结构控制,滑移率控制器采用滑模极值搜索算法,基于分层结构(上层为期望制动力矩计算模块,中层为考虑执行器带宽的动态控制分配模块,下层为电机与液压复合执行器),并考虑位置与速率约束.转向制动时,考虑车辆纵向动力学对侧向动力学的影响,引入前轮转角对滑移率控制律进行了修正.在MATLAB/Simulink中建立七自由度整车模型,对控制算法进行了验证.结果表明:分离路面直线制动时,所提出的控制策略可以同时保证制动能量回收和制动方向稳定性;转弯制动时,可以更好地跟踪理想横摆角速度,提高了车辆的侧向稳定性.  相似文献   

9.
为提高车辆制动性和行驶安全性,针对当前ABS控制方法,提出了基于路面识别的ABS模糊控制。该方法利用车轮制动力矩对路面附着系数进行观测,当观测到μ-λ曲线趋近峰值点时,立即对当前路面进行路面识别,并基于此对车辆ABS进行模糊控制。建立以七自由度整车模型为研究对象,然后通过MATLAB/simulink软件对该控制方法进行制动实验和路面识别仿真。通过仿真实验表明,基于该方法的ABS控制具有较好的制动效果和较强的鲁棒性,并能够对当前车辆行驶路面类型做出准确的识别。  相似文献   

10.
分析了电驱动车辆制动控制中能量回馈与制动稳定性之间的矛盾,提出了一种兼顾制动回馈控制及车轮防抱死控制的基于滑移率试探的电动汽车制动控制策略.在制动过程中根据滑移率是否在稳定区域,实时控制电机制动力与液压制动力,在保证制动稳定性的同时提高制动能量回收能力.该控制策略不依赖于路面辨识、制动力估计等复杂算法.在不同制动工况下的仿真结果表明: 采用该策略能获得接近最优的制动回馈效率,并在大制动力工况中实现了车轮的防抱死控制.  相似文献   

11.
为实现半挂汽车列车在转弯制动时的横向稳定性,建立了半挂汽车列车非线性动力学仿真模型. 利用实车系统的稳态转向试验与直线制动试验,验证了模型的可靠性. 对在低附着路面上行驶的半挂汽车列车转弯制动失稳机理进行了分析. 设计了以牵引车和半挂车的补偿横摆力矩来修正横向稳定性的控制策略,仿真结果表明,控制方案可有效地纠正半挂汽车列车在低附着路面上转弯制动的过度转向,改善车辆的横向稳定性.  相似文献   

12.
为提高三轴重载汽车在转向制动工况下的安全性能,基于TruckSim汽车仿真软件,搭建了三轴重载汽车整车模型。对三轴汽车在转向制动工况下的力学特性进行了分析,基于分析结果设计了削减制动力的三轴汽车转向制动协同控制器。对于车辆处于不足转向的情况,设计了滑移率分配的模糊控制器。采用TruckSim与Simulink联合仿真,对ABS控制和协同控制在转向制动工况下的控制效果进行了探讨。仿真结果表明,在转向制动工况下,与ABS控制器相比,协同控制器提高了三轴重载汽车转向制动工况下的操纵稳定性和制动安全性。  相似文献   

13.
基于模型预测控制理论,从提高车辆极限工况稳定性角度,研究车辆纵向和侧向运动的水平集成控制及纵向、侧向和垂向的全局集成控制.确定了分层集成控制结构,设计了转向/制动模型预测控制器和主动悬架控制器.采用单轮规则制动分配法,实现了车辆底盘转向/制动的水平集成控制和转向/制动/悬架的全局集成控制,并通过仿真实验对算法进行验证.结果表明:集成控制能有效提高车辆极限工况的稳定性和主动安全性.  相似文献   

14.
车辆横向稳定性的模糊控制仿真   总被引:1,自引:0,他引:1  
车辆横向稳定性一般是由车辆的结构来保证的,但车辆在较大侧向力作用下将丧失横向稳定性.通过建立车辆转向运动的简化模型,利用前馈补偿和模糊控制策略,将前轮转向角视为前馈输入变量来补偿转向角引起的车辆侧偏角变化;通过左右车轮制动力差产生附加力矩来控制车辆的横摆运动,同时以车辆横摆角速度为反馈输入变量来校正消除系统误差,设计了车辆模糊控制器,并对控制系统在不同车速下进行了仿真分析.仿真结果表明,施加控制的车辆与无控制的相比,横摆角速度与侧偏角的输出稳态值减小,超调量降低,改善了车辆的横向稳定性.特别在高速情况下,车辆横向稳定性改善更加明显.  相似文献   

15.
 在ADAMS/Car中建立三轴重型载货汽车的虚拟样机模型,包括前后悬架、动力总成、转向系统、稳定杆、制动系、轮胎及车身,同时还考虑了轮胎、悬架弹簧、减振器等部件的非线性.利用Matlab/Simulink建立了基于滑移率的防抱死制动系统ABS模糊控制系统.分别在高附着路面、低附着路面及分离系数路面上进行不同载重下的直线制动仿真,计算汽车制动时的动态特性,并与无ABS的常规制动进行比较.结果表明,本文设计的基于滑移率的ABS模糊控制策略对于重型汽车具有良好的控制效果,使车轮的滑移率控制在最佳滑移率附近,防止了车轮的抱死,在制动距离、制动时间及制动稳定性方面都有较突出的优势.  相似文献   

16.
汽车ESP系统模型和模糊控制仿真   总被引:2,自引:1,他引:1  
汽车电子稳定系统(electronic stability program, ESP)是行驶车辆的一种主动安全系统。它综合了制动防抱死系统,驱动力控制系统和横摆力矩控制系统使行驶车辆的安全性得到很大地提高。建立了七自由度整车模型、magic formula 轮胎模型以及车辆参考模型,采用车辆质心侧偏角的状态差异法,应用模糊控制理论设计了质心侧偏角反馈控制器,将建立的模糊控制器模型和汽车动力学模型组合起来,并通过前轮转角阶跃输入和正弦输入,在常见的易于失稳的湿滑路面上对典型工况进行仿真。结果表明:所设计的控制器可以很好地控制汽车的横摆角速度和质心侧偏角,提高了车辆的稳定性。  相似文献   

17.
研究了车辆稳定性控制系统中车身侧偏角的算法,建立了15自由度整车模型,其中包括车身的6个自由度,4个车轮的旋转和垂直运动自由度以及前轮转动自由度.根据方向盘转角、整车侧向加速度、横摆角速度及其变化率求得前、后轴侧向力进而求得前、后轴中心处侧偏角;根据横摆角速度、前、后轴中心处侧偏角求取整车的车身侧偏角.仿真结果表明,该算法能够在不同附着路面上,在较大车身侧偏角范围内准确求得整车车身侧偏角.  相似文献   

18.
为进一步提高分布式驱动电动汽车行驶过程中的稳定性,提出主动前轮转向(AFS)和直接横摆力矩控制(DYC)协调控制策略.为提高车辆稳态行驶时转向能力,设计基于滑模控制(SMC)的前轮主动转向控制器实时修正前轮转角;以维持车辆工作在稳态工作区为控制目标,设计基于模型预测控制(MPC)的车辆稳定性控制器,通过设定的分配规则按轴荷比等比例分配各轮驱/制动力矩.利用相平面法作为判定依据自适应分配各控制器权重,实现控制器之间的切换.在连续转向工况下,对控制算法进行仿真验证.结果表明:在相同转角输入下,相较于无控车辆,受控状态下车辆的横摆稳定性能提高了16%,行驶状态得到了改善.  相似文献   

19.
提出了一种对制动力进行动态分配控制的新方法·在车辆的转弯制动过程中,采用转向角前馈控制原则,对左、右车轮的制动力进行动态分配控制,使之在各种路况下均能满足制动稳定性的要求·并且通过建立的两自由度三轮车辆模型,进行了计算机模拟·模拟结果显示采用转向角前馈控制的制动力动态分配的方法,大大降低了在制动起作用时间内实际横摆率与理想横摆率之间的差值,从而验证了该方法对提高车辆转弯制动过程中的操纵性和稳定性是有效的·  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号