首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 562 毫秒
1.
建立了考虑电流集肤效应的三维电渣重熔电磁场和温度场数学模型,并采用电磁场和金属熔池形貌测量方法分别验证了数学模型的准确性,分析了电流频率和渣池厚度对电渣重熔过程电流密度、磁感应强度、电磁力、焦耳热、温度、熔池深度的影响规律.结果表明:随着电流频率增加,电极和钢锭表面电流集肤效应明显,渣池内部电流分布基本不变;电渣重熔系统内最大焦耳热位于平底电极与渣池接触角部,然而高温区位于渣池内部电极下方靠近渣金界面处.当渣池厚度从015m增加到021m,渣池中心轴线上最高温度从1826℃降低到1721℃,金属熔池深度从022m降低到016m.  相似文献   

2.
建立了考虑集肤效应的工业规模电渣重熔过程电磁场数学模型,利用FLUENT对磁场强度实部和虚部的传输方程进行求解.分析了工频下电渣重熔过程电磁场的分布特征,并研究了电流频率和电极插入深度对电磁场的影响规律.结果表明:电流频率从0.5 Hz增加到60 Hz时,电极表面的电流密度从91 378 A/m~2增大到190 746 A/m~2;增大电流频率使磁场强度分布主要集中在电极和铸锭表面区域,渣金界面的洛伦兹力方向也会发生改变;在同功率条件下,增加电极的插入深度使远离电极端部的渣池区域中焦耳热密度增大,而电极端部附近渣池的焦耳热密度减小.  相似文献   

3.
以电渣重熔系统电极、渣池和钢锭为研究对象,利用有限元分析软件求得稳定电渣重熔过程电磁场和焦耳热场分布,并通过计算流体动力学软件模拟分析了耦合电磁场和焦耳热场的三维电渣重熔过程在不同电极插入深度下温度场、速度场和电磁场的变化.结果表明:当电极插入深度为15 mm时,渣池两侧的逆时针方向旋转涡流之间出现一个顺时针方向旋转涡流,其尺寸随着电极插入深度的增加而增加;电极插入深度每增加15 mm,湍流动能的降幅约为21%,而最大温度值的降幅约为1%.  相似文献   

4.
电渣重熔过程中电磁现象对重熔过程和铸锭的最终质量有着直接的影响。利用数值模拟的方法研究电渣重熔过程中的电磁行为(电流密度、磁场强度、电磁力和焦耳热)。利用文献实测磁场强度验证模型,模拟结果与测量的电渣重熔渣池内的磁场强度吻合良好。研究结果表明:在工业规模电渣重熔过程中,电流的集肤效应更为明显;随着电流频率的增加,靠近电极外表面的电流密度增加;在此基础上,进一步分析实验室规模电渣重熔和工业规模电渣重熔过程的电流密度、磁场强度、电磁力和焦耳热的分布特征。  相似文献   

5.
以电渣重熔电极、渣池和铸锭为研究对象,建立了电渣重熔体系三维准稳态数学模型.利用商业软件ANSYS得到了电渣重熔过程的电磁场、流场与温度场.计算结果表明,在电极和钢锭内,电流主要集中在外表面,在渣池内主要集中在电极角部;由于电流密度分布不同导致的电磁力和焦耳热及冷却条件共同影响渣池内流场和温度场;随着熔速的增加,熔池深度和两相区最大宽度增加;本工况下,700~800kg/h的熔速将对应一个最短的局部凝固时间.  相似文献   

6.
电渣重熔能提高钢锭的质量,从而满足特种行业的需要,其过程伴随着复杂的物理现象,存在着磁流体流动、传热和传质以及电化学等多方面的影响。通过耦合电磁以及流动和温度方程对电渣重熔过程的三维瞬态进行了数学模拟,研究了熔化速率对重熔过程的影响。结果表明:电流密度、焦耳热和电磁力都随着熔化速率的增大而增大,当熔化速率由14.4kg/h增加到27.0kg/h,电流密度、焦耳热和电磁力最大值的增大比例超过100%。随着熔化速率的增大,温度最大值有小幅的增加,而且速度最大值的增大幅度接近50%;金属熔池深度则由27mm增大到38mm,不利于保证铸坯的质量。  相似文献   

7.
基于新开发的电渣重熔空心钢锭技术,建立了渣池和空心钢锭的三维准稳态数学模型.利用商业软件ANSYS模拟并得到了非导电和导电结晶器工况下,电渣重熔空心钢锭过程的电磁场、流场与温度场.计算结果表明:导电结晶器工况下,渣池的电流密度和焦耳热最大值均出现在T型结晶器的导电段部分,导电结晶器附近的熔池流动速度较快,渣池的温度场更为均匀,金属熔池形状更为浅平.导电结晶器在交换电极时持续保持渣池和金属熔池温度,能够避免渣池温度迅速下降而导致靠近结晶器壁的钢水迅速凝固而出现渣沟,可大大提高钢锭的凝固质量和表面质量.  相似文献   

8.
本研究对电渣重熔过程中电极表面温度,渣池温度,钢锭底部温度、结晶器壁及其冷却水中沿高度的温度分布进行了实验测量。利用安装在结晶器壁上的热流计,对重熔过程在结晶器壁内侧的热流密度沿高度的分布进行了实验测量。进而考察了三种渣系对重熔过程热行为的影响。  相似文献   

9.
建立了耦合电渣重熔过程渣池内电磁场、温度场和流场的数学模型,在考虑渣池内电磁力和热浮力对熔渣流动影响的基础上,分析了电渣重熔工艺(电极形貌、插入深度和电流强度)对渣池磁流体力学行为的影响规律.结果表明:当电磁力为主时,渣池内存在逆时针涡流;当热浮力为主时,渣池内存在顺时针涡流.电渣重熔电流5kA,频率50Hz,电极端部为平面时,渣池内同时存在逆时针和顺时针涡流,最大流速为005m/s;当电极端部为锥形时,渣池内部只存在顺时针涡流,最大流速为020m/s..增加电极插入深度和增大电流强度都会增强渣池内逆时针涡流;相反,则增强渣池内顺时针涡流.  相似文献   

10.
为了研究电渣重熔中凝固过程对钢锭质量的影响,建立了大型电渣重熔过程钢锭凝固过程动态快速响应数学模型 利用控制容积积分法离散数学模型方程,采用附加源项法解决非线性模型方程快速迭代收敛问题 应用该模型预测的温度场及金属熔池形状同实验结果吻合较好 针对一典型大钢锭凝固过程动态温度分布及熔池形状进行了模拟分析,结果表明,当钢锭高度线性增加,而重熔钢锭锭高与直径之比超过1 1时,钢锭熔池形状基本稳定;在低熔铸速度阶段,熔铸速度对最大液池深度的影响不大;当熔铸速度增加时,熔铸速度对最大液池深度的影响有增大倾向  相似文献   

11.
对双极串联电渣重熔工艺原理、等效电路和供电特性进行理论分析,得到电极间距离、电极浸入渣池的深度和填充比是影响电流在渣池中的路径和分配比例的主要影响因素,并对双极串联渣池温度场进行数值模拟。结果表明,双极串联供电使渣池中高温区上移,较传统单极供电渣池中高温区远离渣金界面,有利于提高熔化速度而不影响钢锭凝固质量;双极串联抽锭电渣重熔工业试验结果证明,熔化速度增加2倍情况下钢锭内部凝固质量良好,表明渣池高温区上移减弱了熔化速度和钢锭凝固质量之间的关系。  相似文献   

12.
单逆变器驱动对称六相永磁同步电机串联三相电机是一种新型的多电机系统。针对对称六相电机反电动势的谐波会影响串联系统的解耦控制的问题,在同步旋转坐标系下建立了对称六相电机反电动势含有最主要的2次谐波时串联系统的数学模型,分析了谐波对六相PMSM电磁转矩脉动幅值和频率的影响情况,提出了补偿反电动势谐波效应的解耦控制策略,通过变载和变速仿真证明了所提控制策略的可行性。  相似文献   

13.
通过4种不锈钢焊条对比试验,研究了焊接熔渣的化学成分和组织特征对脱渣性的影响,建立了脱渣性与熔渣成分之间的回归方程。结果表明,熔渣的碱度可以反映各氧化物的交互作用;具有粗大不均匀第二相组织的渣容易去除;渣中较多的白色球状相是导致粘渣的有害组织。  相似文献   

14.
对称六相和三相PMSM串联系统反电动势谐波效应补偿控制   总被引:1,自引:0,他引:1  
提出了单逆变器驱动对称六相和三相PMSM串联系统的谐波效应补偿控制策略.针对实际对称六相PMSM非正弦反电动势中高次谐波将会对该串联系统的运行产生耦合的问题,建立了对称六相PMSM和三相PMSM串联系统的虚拟多电机耦合模型,揭示了对称六相PMSM中主要的二次谐波对串联系统解耦控制的影响机理,提出了消除六相PMSM中等效辅电机产生的转矩脉动耦合的控制方法,分别进行了变速变载对比仿真.结果表明:所提补偿控制策略能够改善反电动势中含有最主要二次谐波产生的转矩脉动对串联系统运行的耦合问题,实现了两台串联电机的独立控制.  相似文献   

15.
300 t顶底复吹转炉炉渣磷酸盐容量计算分析及预测模型   总被引:1,自引:0,他引:1  
通过对某钢厂脱磷转炉炉渣磷酸盐容量计算和分析并结合前人的研究成果,得出实测炉渣磷酸盐容量与炉渣中碱性氧化物含量、炉渣光学碱度、炉渣中全铁含量和温度的变化关系,并结合生产数据拟合出炉渣的组成与炉渣磷酸盐容量的表达式。将文献报道的不同炉渣磷酸盐容量模型的计算值与实测值进行了对比和分析。基于共存理论建立了本渣系炉渣磷酸盐容量预测模型,误差分析表明该预测模型准确可信,将为现场生产提供理论指导。  相似文献   

16.
利用激光在空气密度梯度场中的偏转(折射)效应,设计了激光偏转诊断系统,并诊断航空等离子体激励器诱导空气在其附近的密度变化.实验结果显示:激励器两电极之间靠近上电极附近空气密度扰动达到负最大值(-1.7%),而靠近下电极处空气密度略有增加(+0.27%).实验结果与其他手段的诊断结果一致,但激光偏转系统能更快速有效地诊断诱导的空气密度扰动.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号