首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
实验采用金纳米粒子-壳聚糖/多壁碳纳米管纳米复合材料(AuNPs-CS/MWCNTs)修饰电极制备电化学传感器来对核黄素的电化学行为进行了研究。采用透射电镜对AuNPs-CS/MWCNTs纳米复合材料进行表征,采用循环伏安法和差分脉冲伏安法探讨核黄素在AuNPs-CS/MWCNTs修饰的玻碳电极上的电化学行为,并对RF含量进行测定。实验结果表明, AuNPs-CS/MWCNTs修饰电极对RF有良好的电化学活性,其还原峰电流与核黄素的浓度在0. 025~10. 02μmol/L范围内呈良好的线性关系,检出限为0. 015μmol/L。此传感器具有灵敏度高、抗干扰能力强及重现性好等优点,可以很好进行核黄素的检测。  相似文献   

2.
利用金纳米粒子(Au NPs)和电化学还原氧化石墨烯(ERGO)制备了以玻碳电极(GCE)为基底电极的复合材料修饰电极Au NPs-ERGO/GCE.采用场发射扫描电子显微镜(FESEM)、拉曼光谱、循环伏安(CV)法、计时电流法等方法对复合材料修饰电极进行了系统表征与分析.将所制备的复合材料修饰电极应用于葡萄糖的电化学分析研究.研究数据表明:所制备的Au NPs-ERGO/GCE电极对葡萄糖具有良好的电催化性能,有较宽的检测范围和较好的灵敏度,同时,对抗坏血酸(AA)、尿酸(UA)和氯离子(Cl~-)等共存的干扰物均有良好的抗干扰性能.  相似文献   

3.
采用静电纺丝法和高温碳化法制备了碳纤维材料,进一步用水热合成法制备碳纤维-纳米金复合材料.将优化浓度的碳纤维-纳米金复合材料作为修饰剂固定于碳离子液体电极(CILE)的表面制得了碳纤维-纳米金修饰电极(CNF-Au/CILE),采用扫描电子显微镜考察了复合材料的表面形貌.最优实验条件下将该修饰电极用于ATP的检测,结果...  相似文献   

4.
合成了碳纳米粒子(CNs)和多壁碳纳米管(MWCNTs)复合材料,并通过X射线衍射仪(XRD)、透射电子显微镜(TEM)对材料进行表征.并以玻碳电极为基底,修饰上MWCNTs-CNs复合材料,再用电沉积法将金修饰在MWCNTs-CNs表面后,固定过氧化物酶,成功制备出一种新的生物传感器用于检测过氧化氢.实验表明,该生物传感器对过氧化氢具有良好的电催化性能,过氧化氢的浓度在2.91~980.00μmol/L范围内与其峰电流呈良好线性关系,检出限为0.48μmol/L.同时,该传感器具有灵敏度高、重现性和稳定性好的特点.  相似文献   

5.
通过滴涂法制备了3DGR/MWCNTs/GCE修饰电极,用电化学交流阻抗(EIS)对其进行表征。以循环伏安法(CV)、恒电位库伦分析法(CPC)、线性扫描伏安法(LSV)和计时电量法(CC)研究了甲巯咪唑的电化学行为。结果表明:在pH 2.6的B-R缓冲溶液中,甲巯咪唑在3DGR/MWCNTs/GCE修饰电极上是受扩散控制的双电子和双质子转移的氧化还原过程,扩散系数D=3.461 4×10-6 cm2/s、电极有效面积A=0.061 8cm2.在1.0×10-6~1.0×10-4mol/L浓度范围内,还原峰电流与甲巯咪唑的浓度呈良好线性关系,方法检出限为5.94×10-7 mol/L.  相似文献   

6.
通过恒电流法电沉积分别制备了氧化石墨烯/聚吡咯(GO/PPy)复合材料修饰碳毡(CF)阳极和还原氧化石墨烯/聚吡咯(r GO/PPy)复合材料修饰碳毡阳极.通过循环伏安法和交流阻抗法对电极特性进行考察.将其分别应用到微生物燃料电池中,对其产电性能进行研究.结果表明,相比r GO/PPy-CF电极,氧化石墨烯以掺杂方式加入到聚吡咯中,一步电聚合制备的GO/PPy-CF电极,其电极性能更为优异,且作为MFC阳极时,对电池的产电性能提升更大.该电极制备方法简单,无需使用强还原剂,是一种有效环保的MFC阳极制备方法.  相似文献   

7.
为研制生物医学和环境检测的NO电化学传感器,用碱和硝酸对多壁碳纳米管(MWCNTs)进行功能化.采用循环伏安法(CV)和电化学阻抗法(EIS)研究NO在多壁碳纳米管修饰电极上的电氧化行为,并探讨相应的反应机理.研究结果表明:当氧化电位较低(0.50~0.65 V)时,NO的电氧化受电极电位驱动,氧化速度随着电极电位的升高而加快;当电极电位达到一定值(0.70~0.80 V)时,其电极反应受电荷转移和扩散混合控制;当电极电位较高(0.85 V)时,NO的电极反应受扩散控制;与MWCNTs修饰电极相比,MWCNT-COOH修饰电极上反应的活化能(氧化峰电位)明显降低,其峰电流密度(反应速度)是MWCNTs修饰电极的1.4倍,说明MWCNT-COOH修饰电极能够有效地提高NO氧化的电催化活性和检测灵敏度.  相似文献   

8.
为了赋予碳纳米管(CNTs)表面良好的生物性能,拓展CNTs在硬组织生物材料及组织工程支架材料中的应用,采用化学共沉淀和水热后处理法宏量制备了羟基磷灰石(HA)/多壁碳纳米管(MWCNTs)复合材料,通过调节制备过程中浓硝酸纯化的MWCNTs加入量,考察不同MWCNTs含量的HA/MWCNTs复合材料的结合形式.扫描电子显微镜(SEM)和透射电镜(TEM)表征结果表明,当ω(MWCNTs)=15%时,MWCNTs表面均匀地包覆了一层由纳米HA晶粒紧密相连的膜层,在此情况下MWCNTs与纳米HA形成最佳结合状态.体外细胞培养实验表明,制备的HA/MWCNTs复合材料具有良好的生物相容性.  相似文献   

9.
报道了一类壳聚糖预修饰的多壁碳纳米管(MWCNTs)在温和条件下自发还原Cu离子制备Cu修饰碳纳米管基复合材料的新合成路线.联合谱学表征(XRD,SEM,HRTEM,UV-vis)研究表明,平均粒径约为2nm的超小Cu粒子均匀地分散在MWCNTs的表面;氨水是引发自发还原反应的关键因素;Cu修饰碳纳米管基复合材料能高效催化还原对硝基苯酚.  相似文献   

10.
以离子液体修饰碳糊电极(CILE)作为基底电极,将纳米钯-石墨烯(Pd-GR)复合材料和辣根过氧化物酶(HRP)分层涂布在电极上后用Nafion膜固定,制备了修饰电极(Nafion/HRP/PdGR/CILE).光谱法证明HRP在膜中结构没有发生变化.循环伏安扫描出现一对峰形良好的电化学氧化还原峰,表明HRP与电极之间的直接电子转移得以实现,Pd-GR复合材料的高导电性有利于加快电子传递速率.该HRP修饰电极对三氯乙酸的电催化还原有较好的效果.  相似文献   

11.
通过静电纺丝法制备聚丙烯腈纤维(PANF)并高温碳化以获得碳纳米纤维(CNF),利用水热法将纳米铂(PtNPs)负载于CNF表面得到Pt/CNF复合材料,将其固定于电极表面之后进一步利用电沉积法将纳米金(AuNPs)形成于Pt/CNF表面得到修饰电极(Au/Pt/CNF/CILE)。通过扫描电镜考察复合材料的形貌结构,利用电化学方法研究修饰电极的电化学性能,求解其有效面积。结果表明CNF呈网状结构,PtNPs稳定附着在纤维表面,电沉积的AuNPs均匀分布在Pt/CNF/CILE表面,所制备的修饰电极的导电性能增强、有效面积增大且表面丰富的电活性位点促进了电子的有效转移。  相似文献   

12.
研究石墨烯/酞菁钴复合材料的制备方法及电催化性能,采用微波合成法,以石墨烯(GR)、氯化钴和邻苯二腈为原料,原位合成了石墨烯/酞菁钴(GR/CoPc)复合材料. 通过紫外-可见光谱(UV-vis)、透射电子显微镜(TEM)、拉曼(Raman)光谱、X射线衍射(XRD)、红外光谱(FT-IR)对其结构、微观形貌进行表征,酞菁钴呈棒状均匀分布于石墨烯的片层表面. 制备了GR/CoPc/GCE修饰电极并研究了亚硝酸根在修饰电极上的电化学行为及其作用机理. GR/CoPc/GCE修饰电极对NO2-的电催化性能较单独的CoPc和GR修饰电极相比明显提高. 在实验条件下,亚硝酸根在GR/CoPc/GCE修饰电极上的响应电流与其浓度在1.67~644.27μmol/L的范围内呈良好的线性关系,检测限可达0.6μmol/L. 该修饰电极对亚硝酸根的检测有良好的稳定性、抗干扰性及重现性.   相似文献   

13.
修饰碳纳米管对硼酚醛树脂摩擦性能的影响   总被引:1,自引:0,他引:1  
采用共价接枝法制备了羧基化碳纳米管(MWCNTs -COOH)、二氨基二苯基甲烷修饰碳纳米管( MWCNTs -DDM)、硼酸化碳纳米管(MWCNTs- Borate)修饰碳纳米管(MWCNTs).通过原位聚合的方法制备了修饰碳纳米管/硼酚醛树脂.使用3种碳纳米管改性的树脂制备了摩擦材料并研究了其摩擦性能.结果表明,修饰碳纳米管的加入,有助于提高摩擦材料摩擦系数的稳定性,减小磨损率,改善热衰退性.其中添加质量分数为1%的MWCNTs- Borate的情况改善最大,磨损率减小43.2%,摩擦系数和磨损率衰退率仅为10.3%和28.6%,摩擦表面保持完好.  相似文献   

14.
以多壁纳米碳管(MWCNTs)为电子媒介体和酶的吸附载体,利用层层累积的自组装技术固定葡萄糖氧化酶(GOx)的多层(MWCNTs/GOx)n复合薄膜修饰电极,制备了一种新型葡萄糖生物传感器。结果表明:传感器对葡萄糖的响应电流值随着MWCNTs/GOx复合薄膜层数的不同而变化,当MWCNTs/GOx复合薄膜的层数为6时,响应电流值达到最大。(MWCNTs/GOx)6复合薄膜修饰的葡萄糖生物传感器对3×10-2mol/L葡萄糖的响应电流为1.63μA,响应时间仅为6.7 s。该生物传感器检测的线性范围为5×10-4~1.5×10-2mol/L,最低检测浓度可达0.9×10-4mol/L。  相似文献   

15.
通过一步水热法合成氧化锌(ZnO)/石墨烯量子点(GQDs)纳米复合材料,透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线衍射仪(XRD)和紫外-可见分光光度计(UV-vis)对合成的纳米材料进行表征.将所制备的纳米材料应用于修饰电极,通过循环伏安法和示差脉冲伏安法探究多巴胺在该材料电极的电化学行为,实验结果显示:与氧化锌和石墨烯量子点的单一材料相比,ZnO/GQDs纳米复合材料修饰的电极对检测多巴胺的氧化还原能力更强,并在0. 3~100μmol/L浓度范围内呈良好的线性关系,检出限为0. 19μmol/L(S/N=3).此外,该生物传感器测定实际样品中多巴胺的结果令人满意.  相似文献   

16.
采用蒸发酸纯化多壁碳纳米管(MWCNTs),共沉淀法制备Fe_3O_4/MWCNTs磁性复合材料.通过傅里叶红外光谱(FTIR)、透射电镜(TEM)、X射线衍射(XRD)、X射线光电子能谱分析(XPS)和磁性能检测(VSM)对合成的Fe_3O_4/MWCNTs磁性复合材料组成、结构、形貌、性能等进行表征,并对溶液中的Pb~(2+)进行吸附研究.结果表明:Fe_3O_4纳米颗粒成功嫁接到多壁碳纳米管的表面;Fe_3O_4/MWCNTs磁性复合材料具有超顺磁性,饱和磁化强度为50.10A·m~(-2)/kg,剩磁和矫顽力为0,可通过磁铁将Fe_3O_4/MWCNTs磁性复合材料从溶液中分离出来;Fe_3O_4/MWCNTs磁性复合材料吸附溶液中的Pb~(2+),开始的15min内吸附量达到43.57mg/g,6h后吸附达到平衡,平衡吸附量为50.28mg/g.  相似文献   

17.
血红素(hematin)是一种重要的铁卟啉化合物,具有特殊的生理功能。本文结合离子液体和多壁碳纳米管(MWCNTs)的优良特性,以离子液体修饰碳糊电极(CILE)为基底电极,用聚乙烯醇(PVA)将hematin固定在MWCNTs修饰的CILE表面,利用循环伏安法(CV)研究了hematin在修饰电极上的直接电化学行为。结果表明在PVA膜中hematin保持了良好的生物活性,电化学扫描时出现一对准可逆的氧化还原峰。同时,进一步探究了该修饰电极对亚硝酸盐的电催化作用。  相似文献   

18.
以负载FeSalen(Salen=N,N-双水杨醛缩乙二胺)配合物的APO-5磷铝分子筛复合材料(FeSalen/APO-5)做电极的修饰主剂,聚苯乙烯(PS)为粘结剂,采用物理吸附法在玻碳电极(GCE)表面形成涂层,制备获得FeSalen修饰的玻碳电极(PS/FeSalen/APO-5/GCE)。采用循环伏安法(CV)研究了此修饰电极在不同pH电解液中的电化学性质及其对氧还原反应的电催化作用。结果表明,氧气的电催化还原峰电流随扫描速率的增大而增强,峰电位随扫描速率的增大而负移,ipc~v1/2和Epc~lnv均呈线性关系,并发现此修饰电极能有效地催化分子氧的四电子还原反应,推断其机理属于ECE催化过程。  相似文献   

19.
以水热法制备了聚苯胺/还原氧化石墨烯复合材料,将其超声分散于乙醇溶液中,滴涂在聚对氨基苯磺酸修饰玻碳电极表面,得到聚苯胺/还原氧化石墨烯/聚对氨基苯磺酸修饰玻碳电极.采用循环伏安法考察了5-羟色胺(5-HT)在修饰电极上的电化学行为.实验结果表明该电极对5-HT的氧化反应过程表现出良好的催化活性.最佳条件下,氧化峰电流与5-HT的浓度在0.10~100.0μmol/L范围呈良好线性关系,其线性方程为I_p(μA)=-0.0419C(μmol/L)-0.4171(R=0.996),检出限为0.032μmol/L.当抗坏血酸和多巴胺的浓度增大到5-HT的50倍时,5-HT峰电流几乎不受影响,表明该修饰电极对5-HT检测具有良好的选择性.  相似文献   

20.
采用改进的Hummers法制备氧化石墨烯,并通过原位聚合法将二氧化锰修饰的聚苯胺嫁接到多壁碳纳米管作载体的氧化石墨烯上,制备出新型复合电极材料。使用X射线光电子能谱,扫描电镜及电化学工作站对复合电极材料的形貌、结构进行了研究,通过循环伏安、交流阻抗、循环稳定性测试,表征出复合电极材料的电化学性能,并与未掺杂石墨烯的MnO_2/PANI/MWCNTs电极材料进行了对比。结果表明,引入石墨烯的电极材料的比电容有较大的提升,达到了1 365 F·g~(-1)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号