首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 513 毫秒
1.
水下混凝土中钢筋较容易锈蚀,且锈蚀的原因较复杂。通过一些方法对水下混凝土构件中钢筋的锈蚀的状态进行评定与检测,可做出对钢筋混凝土构件使用寿命的推测和预见。  相似文献   

2.
肖益  罗小勇  侯鹏飞  边丽 《甘肃科技》2010,26(12):117-119
钢筋锈蚀是在当今世界引起混凝土结构耐久性损伤或破坏的首要因素,研究发现锈蚀钢筋混凝土构件粘结性能的退化对其裂缝特征有着显著的影响,随着粘结强度的降低,钢筋混凝土构件的裂缝宽度和平均裂缝间距都会增大。本文从钢筋锈蚀对混凝土构件的裂缝的影响出发,介绍了锈蚀钢筋混凝土梁的裂缝特征、形成原因以及现有的计算方法。  相似文献   

3.
裂缝对钢筋混凝土构件在氯离子侵蚀条件下的耐久性影响较大,积极有效的控制构件裂缝可以提高构件的耐久性.通过理论分析探讨碳纤维约束条件下混凝土构件保护层纵向开裂时钢筋的锈蚀量、锈蚀率等之间的关系;讨论碳纤维约束下混凝土构件裂缝开展的形态.对混凝土保护层锈蚀胀裂破坏的弹性力学模型进行修正,建立碳纤维约束条件下混凝土保护层锈蚀胀裂时钢筋锈蚀量的计算模型,结果证明合理的碳纤维加固方式可以有效约束混凝土构件纵向裂缝的开展.  相似文献   

4.
裂缝特征是反映钢筋混凝土构件正常使用极限状态的一个重要指标.制作了37片不同钢筋类型和配筋率的钢筋混凝土梁,通过外加电流的方法使其加速锈蚀,并通过电流强度、通电时间控制其锈蚀率.讨论了试件在静载试验中的裂缝开展过程及特点.通过与《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004)和《混凝土结构设计规范》(GB 50010-2002)相关公式进行对比分析,建立了钢筋锈蚀率与平均裂缝间距、裂缝宽度的关系.试验研究结果表明,锈蚀率较小时,钢筋混凝土受弯构件的裂缝特征与普通钢筋混凝土构件相同;而锈蚀率较大时,裂缝间距变大,宽度增加.该结果可用于锈蚀钢筋混凝土受弯构件承载力的评估.  相似文献   

5.
钢筋混凝土构件基本上都是带裂缝工作的,只是有些裂缝很细,甚至肉眼看不见(缝宽〈0.5 mm),一般对结构的使用无大的危害,允许其存在。有些裂缝在使用荷载或外界物理及化学因素作用下,不断产生和发展引起混凝土碳化、保护层剥落及钢筋锈蚀,使钢筋混凝土强度和刚度受到削弱,耐久性降低,严重时甚至发生垮塌事故,危害结构的正常使用,必须加以控制,因此研究商品混凝土裂缝产生的原因及预防措施是非常重要而迫切的。  相似文献   

6.
建筑工程施工中,如果混凝土构件出现裂缝,就会影响混凝土构件的刚度和建筑物结构的整体抵抗能力,即使裂缝的出现不会导致混凝土构件的破坏或建筑物的倒塌,也会影响到建筑外观,当裂缝宽度超出一定限度时,也会造成钢筋锈蚀,影响结构构件的耐久性能。本文介绍混凝土工程施工中常见裂缝的控制方法及裂缝的处理措施,对混凝土工程的施工有一定的参考价值。  相似文献   

7.
大量的工程和实践理论分析表明,钢筋混凝土构件基本上都是带裂缝工作的,只是有些裂缝很细,甚至肉眼看不见(缝宽〈0.5mm),一般对结构的使用无大的危害,允许其存在。有些裂缝在使用荷载或外界物理及化学因素作用下,不断产生和发展引起混凝土碳化、保护层剥落及钢筋锈蚀,使钢筋混凝土强度和刚度受到削弱,耐久性降低,严重时甚至发生垮塌事故,危害结构的正常使用,必须加以控制。  相似文献   

8.
针对东北寒冷地区混凝土结构耐久性问题开展试验研究,分析了冻融循环和钢筋锈蚀共同作用下钢筋混凝土受弯构件的受力性能,揭示了冻胀现象和钢筋锈蚀对钢筋混凝土受弯构件抗变形能力的影响规律,并建立了冻融和锈蚀环境下混凝土受弯构件的刚度计算模型,经试验验证、分析对比结果表明,计算模型合理可行.  相似文献   

9.
刘斌 《科技信息》2011,(9):218-219
简要阐述分析了混凝土碳化衰减性能、锈蚀钢筋力学性能、锈蚀钢筋与混凝土粘结性能及基本构件性能退化等方面对混凝土结构性能退化的影响,并给出了钢筋混凝土构件剩余承载力的一般计算方法,针对碳化锈蚀破坏给出建议处治方法。  相似文献   

10.
本文分析了混凝土的碳化,裂缝与钢筋的锈蚀的相互关系及对结构耐久性的影响;收集并发展了裂缝的修补方法,钢筋锈蚀的防护措施,提高结构构件耐久性的措施。图2,表3。  相似文献   

11.
<正>钢筋混凝土结构设计规范明确规定,对有些结构按其所处条件的不同,允许存在一定宽度的裂缝。当裂缝宽度超出一定限度,有时会造成钢筋锈蚀,影响结构构件的耐久性。因此,在施工中应采取有效的技术措施控制裂缝,以确保工程  相似文献   

12.
为研究冲击作用下锈蚀钢筋混凝土梁的力学性能与破坏模态,通过混凝土梁冲击试验,校核了有限元软件ANSYS/LS-DYNA建立的钢筋混凝土梁结构精细化有限元模型的冲击力时程曲线、跨中位移时程曲线和破坏模态的准确性。在已验证有限元模型的基础上,研究钢筋锈蚀率对混凝土梁抗冲击性能的影响。有限元分析表明:混凝土构件在冲击作用下导致的混凝土剥落程度随钢筋锈蚀率的增加而增加。各冲击高度下的锈蚀钢筋混凝土梁均表现出弯曲破坏特征。钢筋锈蚀对钢筋混凝土构件的抗冲击性能具有一定的影响,在相同落锤冲击高度下,冲击力峰值随钢筋锈蚀率的增大逐渐减小,跨中位移随钢筋锈蚀率的增大而增大。当冲击高度为3.0 m时,锈蚀率为30.0%时的冲击力峰值降低到未锈蚀时的17.9%,跨中位移为增加到未锈蚀时的33.3%。  相似文献   

13.
钢筋锈蚀一直是钢筋混凝土结构退化的主要原因之一,识别锈蚀混凝土结构内部损伤信号,将为既有建筑物的结构健康监测提供理论依据。采用声发射(AE)技术在微观裂缝水平上研究钢筋锈蚀对钢筋混凝土(RC)梁弯曲特性的影响。声发射信号的上升时间/峰值幅值(R/A)、振铃计数/持续时间(AF)和改进后的b值分析将用以反映钢锈蚀作用下钢筋混凝土试件裂纹模式和破坏模式的变化。结果表明,随着钢筋锈蚀率的增加,锈蚀钢筋混凝土梁的极限承载力显著降低;声发射信号与混凝土损伤之间有很好的对应关系,试件的损伤过程可以分为3个损伤阶段:初始损伤阶段,损伤演化阶段、持续损伤增长阶段。b值曲线的变化趋势可以反映裂缝的形成和发展。随着荷载的增加,试件的剪切裂缝比例逐渐上升,且在持续损伤阶段,试件锈蚀程度越高,剪切裂缝比例越高。  相似文献   

14.
大量的工程和实践理论分析表明,钢筋混凝土构件基本上都是带裂缝工作的,只是有些裂缝很细,甚至肉眼看不见(缝宽〈0.5mm),一般对结构的使用无大的危害。允许其存在。有些裂缝在使用荷栽或外界物理及化学因素作用下,不断产生和发展引起混凝土碳化、保护层剥落及钢筋锈蚀.使钢筋混凝土强度和刚度受到削弱,耐久性降低,危害结构的正常使用,必须加以控制,因此研究混凝土裂缝产生的原因及预防措施是非常重要而迫切的。  相似文献   

15.
钢筋混凝土结构锈蚀损伤问题的探讨   总被引:2,自引:0,他引:2  
从钢筋混凝土结构的锈蚀损伤出发,阐述了混凝土中钢筋的腐蚀机理,进而分析了由钢筋锈蚀引起的结构粘结性能退化及受弯构件承载能力下降的原因。  相似文献   

16.
针对在役混凝土结构的主要特征、损伤状况、破坏情形及其耐久性的基本特点,将混凝土构件耐久性评定指标分为定性指标和定量指标两大类.分析定性指标中的环境条件、钢筋锈蚀程度,以及定量指标中混凝土碳化深度、混凝土保护层厚度、裂缝宽度、钢筋锈蚀量和构件承载力衰减等影响混凝土构件耐久性的因数,设计各指标的评定方法,并制定相应的评定标准.建立在役混凝土构件耐久性的系统评判模型,以供在役混凝土构件的损伤判别、耐久性失效评定.  相似文献   

17.
混凝土的材料组成、工作环境等因素对其耐久性有很大的影响。通过对不同配合比、不同保护层厚度长期暴露于临海滩涂环境的钢筋混凝土试件表面裂缝规律、钢筋锈蚀程度、力学性能等方面的试验研究,表明:直接暴露于临海环境中的钢筋锈蚀最为严重;钢筋锈蚀越明显,其强度下降趋势越显著,锈蚀率越大,延性越低;混凝土保护层的厚度、裂缝宽度跟钢筋锈蚀之间是相互影响的,保护层厚度越小,裂缝宽度越大,钢筋锈蚀率越高,当裂缝宽度为小于或等于0.2mm的细微裂缝时,钢筋锈蚀率≤2%,当裂缝宽度0.5 mm时,钢筋锈蚀率与裂缝之间可能存在线性正向关系。  相似文献   

18.
从混凝土内钢筋锈蚀的电化学基本原理出发,系统阐述了因钢筋锈蚀而引起混凝土劣化的机制,分析了钢筋锈蚀后对钢筋混凝土构件的影响,依据影响钢筋锈蚀的主要因素分析,提出了锈蚀的防治措施。  相似文献   

19.
为了探究热带海洋环境下混凝土结构的钢筋锈蚀现状,对中国南海岛礁珊瑚混凝土结构和普通混凝土进行现场调研与测试,研究了混凝土结构的钢筋锈蚀率、锈蚀钢筋强度与变形的规律以及钢筋锈蚀率与钢筋表面自由氯离子含量之间的关系.结果表明:在南海岛礁工程中,多风、高温、潮湿的海洋环境对钢筋混凝土结构具有很强的腐蚀破坏作用,钢筋锈蚀率较大,其主要破坏特征为混凝土保护层胀裂、剥落、垮塌、露筋、钢筋锈蚀等,钢筋锈蚀以坑蚀为主;随着钢筋锈蚀率的增大,锈蚀钢筋的屈服强度逐渐降低,锈蚀钢筋的屈强比也呈下降趋势.普通混凝土结构因氯离子扩散导致的钢筋起锈时间不足22~25a;不同暴露区域对钢筋锈蚀率的影响规律是浪溅区水下区大气区.  相似文献   

20.
在钢筋混凝土结构中,混凝土保护层的质量达不到标准要求,会对结构的耐久性造成很大危害:混凝土保护层过薄易形成裂缝等缺陷使保护层失去作用,钢筋过早锈蚀,降低结构强度和延性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号