首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
波纹度对球轴承振动噪声的影响   总被引:1,自引:0,他引:1  
针对球轴承在制造过程中形成的表面波纹度对轴承振动噪声的影响,采集了国内外不同轴承厂家的轴承样品,设计了测量样品振动速度的实验方案,获取了样品振动速度的时域波形和幅频曲线。利用圆度仪测取了样品内外滚道的波纹度曲线。分析表明:异常噪声的产生原因主要是轴承滚道几何形状精度较低、波幅值较大。探讨轴承的振动噪声产生机理为指导低噪声轴承的生产加工提供理论参考。  相似文献   

2.
轴承作为机械零部件之一,在机械工程制造中起到十分关键的作用。轴承的质量直接影响设备的精度。为此研究了内、外圈滚道的圆度和波纹度对滚动轴承振动的影响。采用正交试验设计了实验方案,对结果数据进行了处理和分析,得到了比较满意的实验结果。结果表明,内圈滚道的圆度是影响轴承振动的关键因素,并且在其值为0.3μm时得到的振动值最小。研究结果可为轴承的生产加工过程提供参考。  相似文献   

3.
以滚珠直线导轨为研究对象,在实际测试的基础上提出了导轨系统中滚道表面波纹度数学模型,建立了滚珠与滚道因波纹度引起的接触量变化的解析模型.基于赫兹接触理论分析了滚珠与滚道之间接触量与接触力的关系,将滑块简化为一个刚体,建立滑块的动力学方程;在一定速度条件下对该方程进行求解,并与试验测试的结果进行对比,验证了所建立的导轨系统动力学模型的有效性.数值计算结果表明:在导轨系统振动的研究中滚道波纹度是不可忽略的因素.  相似文献   

4.
以30204 型圆锥滚子轴承试验数据为基础,利用灰色模糊聚类分析方法对影响圆锥滚子轴承振动的 因素进行了综合分析,将圆锥滚子轴承各项参数按其对振动的影响分为三类:第一类对振动的影响最大,其 中包括滚子凸度、滚子直径偏差Dw 等参数;第二类对振动的影响较大,其中包括内滚道圆度,内滚道直线性 Li 等参数;第三类对振动的影响最小,其中包括内滚道波纹度,内滚道的角度偏差Δ2β 等参数。根据分类可 知,试验中圆锥滚子轴承的大部分参数都会对振动产生较大的影响。  相似文献   

5.
本文以磨削加工过程的动态数学模型为基础,就外界干扰所引起的强迫振动以及内在反馈作用下产生的自激振动,对磨削加工后工件表面波纹度的决定性影响,进行了深入的研究。从而探索了由工件加工质量分析机床设备是否异常的方法,解决了实际中的问题,提出了降低和消除磨削波纹度的方向和措施。  相似文献   

6.
波纹度误差是影响滚动轴承振动和噪声性能的重要因素.以深沟球轴承为研究对象,通过自相关函数构建了轴承内外圈滚道三维波纹度模型,通过力学分析建立了内圈轴心及滚动体中心的运行轨迹的计算方法,并采用相应的声学模型,运用声源复合的方法对轴承的噪声进行定量计算.通过具体算例,研究了内圈和滚动体的声辐射特性,发现轴承的噪声辐射在空间...  相似文献   

7.
根据轴承工艺误差建立其自激振动的力学模型,并应用传递函数和相应的计算程序求解振动量.综合分析了工艺误差和润滑对振动的影响机理,由此得到与轴承振动相关的临界波纹度和临界粘度概念,可作为合理制订工艺和选择润滑剂的依据.  相似文献   

8.
滚动直线导轨副误差均化作用理论分析   总被引:2,自引:0,他引:2  
将滚动直线导轨副钢球接触区简化为弹性阻尼元件,从理论上分析滑块相对导轨运动过程中钢球接触区对滚道波纹度具有误差均化作用的原因。  相似文献   

9.
胎面侧向自激振动是轮胎多边形磨损现象产生的根源.对后悬架四自由度自激振动模型进行Simulink仿真,验证了轮胎侧向振动是一种硬自激振动.对系统自激振动状态影响较大的敏感参数主要有轮胎橡胶刚度及阻尼系数、垂向载荷、接地附着系数、接地块质量、轮胎前束角以及外倾角.对敏感参数的灵敏度计算确定了影响分岔车速的参数灵敏度排序.最后,给出了抑制轮胎侧向自激振动的主要有效措施:增大胎面—路面附着系数及减小轮胎前束角可以减小产生自激振动的车速范围或者将其从正常行驶车速范围移除,从而减少胎面磨损,延长轮胎使用寿命.  相似文献   

10.
研究了管壳式换热器在现场抽芯和装芯过程中产生的自激振动现象,并通过对抽、装芯过程建立运动模型,导出振动方程,从而对其自激振动现象进行了理论分析。提出了控制这种自激振动的措施。  相似文献   

11.
迷宫密封气流激振效应对转子振动响应影响的实验研究   总被引:3,自引:0,他引:3  
用PL302双通道数据采集器在谱分析仪测试了高速转子在升、降速过程中对迷宫密封中气流激振效应的亚异步自激振动响应,得到了振动响应的三维频谱图。实验结果志明,迷宫密封气流激振对高专子振向应有影响,迷宫密封结构参数对转子稳定性有影响。迷宫密封气流激振引起的转子亚异步自激振动有一个转速门槛值,这种振动一旦发生,其振幅随转速的升高而增大,而振动频率维持不变。迷宫密封气流激振引起的亚异步自激振动和油膜涡动有  相似文献   

12.
一类轧机自激振动现象的分析与解决   总被引:2,自引:0,他引:2  
研究了1420冷连轧机的自激振动现象,建立了轧辊的振动数学模型,并运用多尺度摄动法进行分析求解,提出了解决自激振动的方法.实验表明,该方法可有效地控制轧辊的自激振动,提高系统的稳定性、  相似文献   

13.
为了研究分离式双箱梁斜拉桥的涡激振动特性,以港珠澳江海直达船航道桥为研究对象,以风洞试验为研究手段,分析加风障、增设不同开槽率的中央底板、改变腹板角度和增设导流板等气动措施对主梁涡激振动特性的影响,以及在不同风攻角下不同气动断面的涡激振动特点。试验和分析结果表明:风障虽然不能避免涡激振动的发生,但是可以有效地减小涡激振动的振动幅度;底板开槽可以有效地控制涡激振动的发生,并存在1个最佳开槽率;改变幅板角度可以有效地避免二阶涡激振动的发生,但对一阶涡激振动影响效果不明显;相比较而言,导流板设置在断面两侧是对主梁断面进行涡激控制最有效的措施。  相似文献   

14.
冰致自激振动测量与机理解释   总被引:1,自引:0,他引:1  
在海洋平台上观测到了冰致结构的稳态振动,以及冰力和平台响应间的频率锁定现象.通过对实测数据和冰与结构相互作用的破碎机理分析,证明冰致稳态振动属于自激振动.给出了产生冰致自激振动的条件,提出了冰致自激振动的物理机制,指出冰致自激振动发生在冰加载速率的韧脆转变区,整个过程中冰内裂纹的形成与扩展受到了结构运动速度的控制.冰内部的微裂纹行为是解释与描述冰致自激振动的关键要素.  相似文献   

15.
用PL30 2双通道数据采集器及频谱分析仪测试了高速转子在升、降速过程中对迷宫密封中气流激振效应的亚异步自激振动响应 ,得到了振动响应的三维频谱图。实验结果声明 ,迷宫密封气流激振对高速转子振动响应有影响 ,迷宫密封结构参数对转子稳定性有影响。迷宫密封气流激振引起的转子亚异步自激振动有一个转速门槛值 ,这种振动一旦发生 ,其振幅随转速的升高而增大 ,而振动频率维持不变。迷宫密封气流激振引起的亚异步自激振动和油膜涡动有显著的不同 ,可以用测试转子振动三维频谱图的方法来诊断高速转子的复杂故障  相似文献   

16.
轧机主传动系统持续的自激振动将产生高频、高幅值的动载荷,使设备受到严重破坏.通过建立轧机主传动系统自激振动理论模型和现场实验研究,发现轧件与轧机之间"打滑"是诱发自激振动的主要原因.开坯机由于压下量大,造成"咬入"困难,应当采用车削方式加工轧辊辊身,以增大轧辊与轧件之间的摩擦系数.  相似文献   

17.
袁梁梁 《科技信息》2010,(28):129-129
本文就车削过程中产生的振动及其对加工的影响进行了简单地描述,重点对车削过程中产生自激振动的因素及其特点进行了描述和分析,并从切削用量、刀具的几何参数、工艺系统的抗振性、机床系统的抗振性、工艺系统薄弱环节的刚度等几方面有针对性的对自激振动采取相应的控制及消振方法、措施进行描述。  相似文献   

18.
为研究吸气对圆柱涡激振动的控制效果,采用吸气控制方式,选取不同的来流风速、吸气速度和吸气角度进行风洞试验.通过在风洞中使用质量阻尼系统使圆柱发生涡激振动,并对比控制效果.研究结果表明:定常吸气对涡激振动临界风速、涡激振动锁定区间长度以及降涡激振动的幅值都有影响;当吸气角度为0°,45°或180°时,吸气对涡激振动有很好的控制效果;当吸气角度为90°或135°时,控制效果最显著;吸气系数对控制效果也有一定影响.通过分析圆柱表面风压特性可知:吸气控制对流场既有稳定作用,又有扰动作用.当吸气流量比较小时,稳定作用占主导;随着吸气量增大,扰动作用越来越明显.  相似文献   

19.
振动按激励类型分为自由振动、强迫振动、自激振动和参数振动。目前固有频率测量的两种方法:敲击法和扫频法分别基于自由振动和强迫振动的原理。提出基于自激振动的原理测量圆柱壳的固有频率与模态的方法。此处的自激振动是基于电信号反馈激励,从而导致圆柱壳的自激振动;而非普遍被研究的摩擦导致的自激振动或线的风激振。将其命名为电反馈自激振动法,通过该方法对一个圆柱不锈钢钢管的模态与响应幅度-激励频率曲线的测量。与敲击法、扫频法和ANSYS仿真分析的结果进行对比,证明了该方法测量固有频率及模态的可行性;并得到自激振动时的振型分布及稳定激振的频率与传感器的位置有关的结论。该方法相比敲击法和扫频法具有测量设备简单、测量快速的优点。  相似文献   

20.
本文对初轧过程中打滑时的自激振动进行了理论分析,利用非线性振动理论中的渐近法导出了自激振动能否建立起来的判据。编制了自激振动程序,并对工程实例进行丁计算。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号