共查询到18条相似文献,搜索用时 62 毫秒
1.
2.
提出了一种基于蚁群算法(ACG)的模糊动态C-均值聚类算法的声纹识别,该算法首先利用蚁群算法的较强处理局部极值的能力,克服了算法在选取聚类中心点时采用随机选取易使得迭代过程陷入局部最优解的缺点,动态地确定了聚类中心和数目.两者有机结合起来可以寻求到具有全局分布特性的最优聚类.将此算法运用于声纹识别上,从语音信号中提取待识别的特征矢量集,对待识别声纹信号进行识别.实验证明,该算法解决了算法对初始值敏感,易陷入局部最优的问题,且计算简单,识别率较高,具有较好的鲁棒性. 相似文献
3.
基于蚁群算法的模糊C-均值聚类算法在声纹识别中的应用 总被引:3,自引:3,他引:3
提出了一种基于蚁群算法(ACG)的模糊动态C-均值聚类算法的声纹识别,该算法首先利用蚁群算法的较强处理局部极值的能力,克服了算法在选取聚类中心点时采用随机选取易使得迭代过程陷入局部最优解的缺点,动态地确定了聚类中心和数目.两者有机结合起来可以寻求到具有全局分布特性的最优聚类.将此算法运用于声纹识别上,从语音信号中提取待识别的特征矢量集,对待识别声纹信号进行识别.实验证明,该算法解决了算法对初始值敏感,易陷入局部最优的问题,且计算简单,识别率较高,具有较好的鲁棒性. 相似文献
4.
基于蚁群算法的模糊C均值聚类 总被引:2,自引:0,他引:2
基于蚁t群算法的FCM聚类算法,利用蚁群算法能够得到局部极值的能力,对初始化非常敏感的初始值聚类教和模糊中心点处理.并对基本蚁群算法模型稍加修改,将其应用于模糊聚粪问题. 相似文献
5.
文章提出了一种新的聚类方法NFC,首先用模糊逻辑神经元网络的聚类算法和Cauchy训练的模拟退火算法相结合的局部算法得到初始聚类中心,然后用FCM算法进行模糊聚类;实验证明,NFC算法在一定程度上解决了FCM局部极值问题且有效性非常高。 相似文献
6.
李金霞 《南京邮电大学学报(自然科学版)》2009,9(19)
利用改进的自适应粒子群优化算法(APSO)较强全局寻优、快速收敛的特点和模糊C-均值算法(FCM)对初始值敏感、容易陷入局部最优的缺点,提出一种基于自适应粒子群优化算法的模糊聚类算法(APFM)。新算法有效的克服了FCM算法的缺点,同时增强了APSO算法全局搜索和跳出局部最优的能力。实验表明:新算法与单一的FCM和APSO算法相比聚类更准确,效率更高。 相似文献
7.
基于模糊聚类方法的T-S模糊系统建模 总被引:4,自引:0,他引:4
提出了用一个聚类验证准则设计模糊C均值聚类算法,这个聚类验证准则是用来确定模糊C均值算法中合适的聚类数.针对T—S模糊模型,由模糊c均值聚类算法确定其逻辑前件参数,进而采用最小二乘算法确定模糊推理规则的后件参数.最后,应用本文建模方法对一个非线性实例进行仿真计算,并与其它方法进行了比较,结果表明本文方法是有效的. 相似文献
8.
基于APSO的模糊聚类算法 总被引:1,自引:0,他引:1
利用改进的自适应粒子群优化算法(APSO)较强全局寻优、快速收敛的特点和模糊C-均值算法(FCM)对初始值敏感、容易陷入局部最优的缺点.提出一种基于自适应粒子群优化算法的模糊聚类算法(APFM).新算法有效的克服了FCM算法的缺点,同时增强了APSO算法全局搜索和跳出局部最优的能力.实验表明:新算法与单一的FCM和APSO算法相比聚类更准确,效率更高. 相似文献
9.
遗传算法与改进的FCM聚类算法的结合 总被引:4,自引:0,他引:4
模糊C-均值聚类(FCM)对初始值很敏感,易于陷入局部极小点而不能搜索到全局的聚类中心,而遗传算法是一种全局搜索方法,本文通过改变隶属度约束条件由FCM算法得到一种新的模糊聚类算法PCM,并将其与遗传算法相结合。实验结果表明,这种方法明显优于传统FCM算法。 相似文献
10.
基于粒子群优化算法的模糊C-均值聚类 总被引:15,自引:0,他引:15
利用粒子群优化(PSO)算法全局寻优、 快速收敛的特点, 结合模糊C 均值(FCM)算法提出一种新的模糊聚类算法. 新算法用PSO算法代替了FCM算法的基于梯度下降的迭代过程, 使算法具有很强的全局搜索能力, 很大程度上避免了FCM算法易陷入局部极小的缺陷; 同时也降低了FCM算法对初始值的敏感度. 实验结果表明, 与FCM相比本文算法聚类更为准确, 效率更高. 相似文献
11.
一种基于蚁群聚类的径向基神经网络 总被引:2,自引:0,他引:2
提出了一种基于蚁群聚类算法的径向基神经网络.利用蚁群算法的并行寻优特征和挥发系数方法的自适应更改信息量的能力,并以球面聚类的方式确定了径向基神经网络中基函数的位置,同时通过比较隐层神经元的相似性、合并相似性较为接近的2个神经元来约简隐含层的神经元,以达到简化径向基神经网络结构的目的.实验比较了几种不同聚类算法的径向基神经网络,结果表明,所提神经网络的整体训练时间至少可缩短40%,学习的准确率可提高1%以上,而且网络结构更加精简. 相似文献
12.
作为数据挖掘技术的重要组成部分,聚类分析在很多领域有着广泛的应用.蚁群算法由于采用分布式并行处理和正反馈机制,具有较好的全局收敛性,并且在解决多种NP难问题中取得了成功.将信息素扩散模型引入到蚁群聚类算法中,通过设计新的信息素更新机制,提出一种新的基于信息素扩散的蚁群聚类算法.实验结果表明新算法在聚类效果上比基本的蚁群聚类算法有较明显的改善. 相似文献
13.
基于遗传和蚁群算法融合的聚类新方法 总被引:1,自引:0,他引:1
遗传算法具有快速良好的全局搜索能力,而蚁群聚类算法具有良好的分布式并行性和正反馈能力。将两种算法进行融合,充分利用算法各自的优势和特点,能更有效地进行聚类分析。实验证明这种新组合算法在优化能力和时间性能上比常用的聚类算法有比较明显的优势。 相似文献
14.
基于模糊聚类思想,提出了一种神经网络集成方法.由训练数据的模糊聚类结果,把训练数据划分成相交子集,基于各子集生成集成的个体神经网络.由于各子集所包含的数据和数据的类别各不相同,因而个体神经网络性能和结构存在差异.子集个数确定集成中个体神经网络个数.另外,基于隶属度函数计算公式,提出了个体神经网络输出结论结合方法.理论分析和实验结果表明,此方法对模式分类能取得较好的效果. 相似文献
15.
基于聚类和模糊神经网络的故障诊断 总被引:2,自引:0,他引:2
模糊神经网络能够发挥模糊逻辑和神经网络的特性,在武器装备的故障诊断中应用越来越广泛。文中提出了一种基于聚类和模糊神经网络的故障诊断模型,该模型首先通过基于关系度的聚类方法得到模糊神经网络的初始结构,并用梯度下降法对网络的参数进行修改,以得到泛化能力好的诊断网络。仿真结果表明该模型是有效的。 相似文献
16.
为了进一步提高网络入侵检测的效果,提出一种基于聚类集成的入侵检测算法。首先利用Bagging算法从训练集中生成多个训练子集。然后调用模糊C均值聚类算法训练并生产多个基本聚类器。然后利用信息论构造适应度函数。采用粒子群算法从上述聚类集体中获得一个具有最优性能的集成聚类器。仿真实验结果表明,该算法能有效的提高入侵检测的精度,具有较高的泛化性和和稳定性。 相似文献
17.
基于蚁群神经网络的设备故障诊断 总被引:2,自引:0,他引:2
BP算法在神经网络中应用较为广泛,但有收敛速度慢、易于陷入局部极小的缺点,而蚁群算法是一种新型的模拟进化算法,有正反馈、分布式计算、全局收敛、启发式学习等特点.将蚁群算法和神经网络结合起来,应用于设备故障专家系统的知识荻取和诊断推理中,可以提高运算效率,具有很好的应用前景.利用该方法,对测得的样本数据进行实验分析,证明此系统具有推理效率及准确性较高的特点. 相似文献
18.
Fuzzy Clustering with Novel Separable Criterion 总被引:1,自引:0,他引:1
Introduction Fuzzy clustering plays an important role in pattern rec ognition, image processing, and data analysis. In fuzzy clustering, every point is assigned a membership to represent the degree of belonging to a certain class The fuzzy c-means (FCM) m… 相似文献