首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 106 毫秒
1.
2.
The low-density lipoprotein (LDL) receptor is the prototype of a classical endocytosis receptor that mediates the uptake of extracellular ligands. Other members of the LDL receptor gene family, on the other hand, have been shown to regulate intracellular signalling cascades. Among these are the LDL receptor-related protein 1, LRP1, a promiscuous and ubiquitously expressed receptor which is critically involved in a multitude of diverse physiological processes; the Reelin receptors ApoER2 and VLDL receptor, which participate in neuronal development; and megalin, a multifunctional receptor expressed in various epithelia. In this review, we focus on recent developments that highlight similarities and differences between these related receptors and their biological function, and discuss open questions as to the underlying molecular mechanisms.  相似文献   

3.
Neurotrophin signalling pathways regulating neuronal apoptosis   总被引:18,自引:0,他引:18  
Recent evidence indicates that naturally occurring neuronal death in mammals is regulated by the interplay between receptor-mediated prosurvival and proapoptotic signals. The neurotrophins, a family of growth factors best known for their positive effects on neuronal biology, have now been shown to mediate both positive and negative survival signals, by signalling through the Trk and p75 neurotrophin receptors, respectively. The mechanisms whereby these two neurotrophin receptors interact to determine neuronal survival have been difficult to decipher, largely because both can signal independently or coincidentally, depending upon the cell or developmental context. Nonetheless, the past several years have seen significant advances in our understanding of this receptor signalling system. In this review, we focus on the proapoptotic actions of the p75 neurotrophin receptor (p75NTR), and on the interplay between Trk and p75NTR that determines neuronal survival.  相似文献   

4.
Dependence receptors: between life and death   总被引:2,自引:0,他引:2  
The recently described family of dependence receptors is a new family of functionally related receptors. These proteins have little sequence similarity but display the common feature of inducing two completely opposite intracellular signals depending on ligand availability: in the presence of ligand, these receptors transduce a positive signal leading to survival, differentiation or migration, while in the absence of ligand, the receptors initiate or amplify a negative signal for apoptosis. Thus, cells that express these proteins manifest a state of dependence on their respective ligands. The mechanisms that trigger cell death induction in the absence of ligand are in large part unknown, but typically require cleavage by specific caspases. In this review we will present the proposed mechanisms for cell death induction by these receptors and their potential function in nervous system development and regulation of tumorigenesis.Received 19 December 2003; received after revision 19 February 2004; accepted 26 February 2004  相似文献   

5.
Long-term potentiation (LTP) and long-term depression (LTD) are two electrophysiological models that have been studied extensively in recent years as they may represent basic mechanisms in many neuronal networks to store certain types of information. In several brain regions, it has been shown that these two forms of synaptic plasticity require sufficient dendritic depolarization, with the amplitude of the calcium signal being crucial for the generation of either LTP or LTD. The rise in calcium concentration mediated by the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors has been proposed to stimulate various calcium-dependent enzymatic processes that could convert the induction signal into long-lasting changes in synaptic structure; protein kinases and phosphatases have so far been considered predominantly with regard to LTP and LTD formation. According to several lines of experimental evidence, changes in synaptic function observed with LTP and LTD are thought to be the result of modifications of postsynaptic currents mediated by the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) subtype of glutamate receptors. Moreover, it has become apparent recently that activation of the calcium-dependent enzyme phospholipase A2 (PLA2) could be part of the molecular mechanisms involved in alterations of AMPA receptor properties during long-term changes in synaptic operation. In the present review, we will first describe the results that indicate a critical role of the phospholipases in regulating synaptic function. Next, sections will be devoted to the effects of PLA2 and phospholipids on the binding properties of glutamate receptors, and a revised biochemical model will be presented as an attempt to integrate the PLA2 enzyme into the mechanisms ( in particular kinases and phosphatases) that participate in adaptive neural plasticity. Finally, we will review data relevant to the issue of selective changes in AMPA binding after environmental enrichment and LTP.  相似文献   

6.
Lactoferrin     
Mammalian lactoferrin (Lf) receptors are suggested to have pivotal roles for mediating multiple functions of Lf. In this review, we focus on current knowledge of the structure and function of mammalian Lf receptors, mainly the first cloned Lf receptor that has been shown to be expressed in the infant small intestine at high levels but also in virtually all other tissues. The small intestinal Lf receptor takes up iron from Lf into cells and presumably exerts other physiological functions. Other Lf receptors in various tissues have also been reported to mediate some functions of Lf, such as modulating immune function, inhibiting platelet aggregation and enhancing collagen gel contractile strength. The detailed mechanisms behind the receptor-Lf interactions still need to be elucidated.  相似文献   

7.
Gangliosides, a heterogeneous family of glycosphingolipids abundant in the brain, have been shown to affect neuronal plasticity during development, adulthood and aging. This review will examine old and recent evidence that exogenous gangliosides and in particular GM1, the prototype member of this family, exhibit multimodal neurotrophic effects. Since these compounds are a potential therapeutic tool for the treatment of various forms of acute or chronic neurodegenerative diseases, understanding the dynamic interplay of gangliosides and neuronal cells is essential in the effort to cure neurological disorders. Focus will be given to the novel and provocative hypothesis that gangliosides' neuroprotective properties may derive from their ability to mimic endogenous neurotrophic factors.  相似文献   

8.
9.
The transforming growth factor-β (TGFβ) superfamily of proteins and their receptors are crucial developmental factors for all metazoan organisms. Cystine-knot (CK) motif is a spatial feature of the TGFβ superfamily of proteins whereas the extra-cellular domains (ectodomains) of their respective receptors form three-fingered protein domain (TFPD), both stabilized by tight cystine networks. Analyses of multiple sequence alignments of these two domains encoded in various genomes revealed that the cystines forming the CK and TFPD folds are conserved, whereas the remaining polypeptide patches are diversified. Orthologues of the human TGFβs and their respective receptors expressed in diverse vertebrates retain high sequence conservation. Examination of 3D structures of various TGFβ factors bound to their receptors have revealed that the CK and TFPD domains display several similar spatial traits suggesting that these two different protein folds might have been acquired from a common ancestor.  相似文献   

10.
The discoidin domain receptors (DDRs) are collagen-binding receptor tyrosine kinases that have been implicated in a number of fundamental biological processes ranging from growth and development to immunoregulation. In this review, we examine how recent proteomic technologies have enriched our understanding of DDR signaling mechanisms. We provide an overview on the use of large-scale proteomic profiling and chemical proteomics to reveal novel insights into DDR therapeutics, signaling networks, and receptor crosstalk. A perspective of how proteomics may be harnessed to answer outstanding fundamental questions including the dynamic regulation of receptor activation kinetics is presented. Collectively, these studies present an emerging molecular portrait of these unique receptors and their functional role in health and disease.  相似文献   

11.
α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) receptors are one type of ionotropic glutamate receptor involved in rapid excitatory synaptic transmission. AMPA receptors have been increasingly implicated in long-term potentiation, and recent evidence suggests that they may play a role in disorders affecting the nervous system. The finding that early in postnatal development AMPA receptors are not expressed has lately been the focus of much attention. Resolving the factors involved in AMPA receptor expression suggests that their induction is a developmentally regulated process with the possibility that alterations in receptor expression may be correlated with pathology in neurological disorders. This paper provides an overview of factors involved in AMPA receptor induction as well as of their role in plasticity and neuronal pathologies. Received 5 December 2000; received after revision 12 January 2001; accepted 2 February 2001  相似文献   

12.
The bone marrow microenvironment plays an important role in promoting hematopoietic progenitor cell proliferation and differentiation and the controlled egress of these developing hematopoietic cells. The establishment of long-term bone marrow cultures, which are thought to mimic hematopoiesis in vitro, and various stromal cell lines has greatly facilitated the analysis of the functions of this microenvironment. Extracellular matrix (ECM) molecules of all three categories (collagens, proteoglycans and glycoproteins) have been identified as part of this microenvironment and have been shown to be involved in, different biological functions such as cell adhesion and anti-adhesion, binding and presentation of various cytokines and regulation of cell growth. It is suggested that these matrix molecules in combination with cytokines are crucial for compartmentalization of the bone marrow. Although many cell adhesion molecules have been characterized on the surface of hematopoietic progenitor cells, the nature of cellular receptors for the ECM components is less well defined. During leukemia, many immature blood cells are released from bone marrow, but it is not yet known whether these abnormalities in hematopoiesis are also caused by an altered microenvironment or altered composition of its extracellular matrix. The elucidation of the involvement of specific ECM-isoforms and as yet not characterized ECM components and their receptors in the bone marrow will certainly help towards a better understanding of these phenomena.  相似文献   

13.
14.
15.
Stem cells are a powerful resource for cell-based transplantation therapies in osteodegenerative disorders, but before some kinds of stem cells can be applied clinically, several aspects of their expansion and differentiation need to be better controlled. Wnt molecules and members of the Wnt signaling cascade have been ascribed a role in both these processes in vitro as well as normal development in vivo. However some results are controversial. In this review we will present the hypothesis that both canonical and non-canonical signaling are involved in mesenchymal cell fate regulation, such as adipogenesis, chondrogenesis and osteogenesis, and that in vitro it is a timely switch between the two that specifies the identity of the differentiating cell. We will specifically focus on the in vitro differentiation of adipocytes, chondrocytes and osteoblasts contrasting embryonic and mesenchymal stem cells as well as the role of Wnts in mesenchymal fate specification during embryogenesis.  相似文献   

16.
New developments in the biological functions of lysophospholipids   总被引:4,自引:0,他引:4  
Lysophospholipids have long been recognized as membrane phospholipid metabolites, but only recently has their role as intercellular signaling molecules been appreciated. Two of the best-studied lysophospholipids, LPA and S1P, signal through cognate G-protein-coupled receptors to activate many well-known intracellular signaling pathways, leading to a variety of biologically important cell responses. Lysophospholipids and their receptors have been found in a wide range of tissues and cell types, indicating their importance in many physiological processes, including reproduction, vascular development, cancer and nervous system function. This article will focus on the most recent findings regarding the biological functions of lysophospholipids in mammalian systems, specifically as they relate to health and disease. Received 5 April 2006; received after revision 22 June 2006; accepted 9 August 2006  相似文献   

17.
Bone morphogenetic proteins (BMPs) are one of the main classes of multi-faceted secreted factors that drive vertebrate development. A growing body of evidence indicates that BMPs contribute to the formation of the central nervous system throughout its development, from the initial shaping of the neural primordium to the generation and maturation of the different cell types that form the functional adult nervous tissue. In this review, we focus on the multiple activities of BMPs during spinal cord development, paying particular attention to recent results that highlight the complexity of BMP signaling during this process. These findings emphasize the unique capacity of these signals to mediate various functions in the same tissue throughout development, recruiting diverse effectors and strategies to instruct their target cells.  相似文献   

18.
Memory     
The molecular mechanisms underlying the induction and maintenance of memory are highly dynamic and comprise distinct phases covering a time window from seconds to even a lifetime. Neuronal networks, which contribute to these processes, have been extensively characterized on various levels of analysis, and imaging techniques allow monitoring of both gross brain activity as well as functional changes in defined brain areas during the time course of memory formation. New techniques developed in honeybees and fruit flies even allow for manipulation of neuronal networks and molecular cascades in a short temporal domain while a living animal under observation acquires new associative memories. These advantages make honeybees and flies ideal organisms to study transient molecular events underlying dynamic memory processing in vivo. In this review we will focus on the temporal features of molecular processes in learning and memory formation, summarize recent knowledge and present an outlook on future developments.  相似文献   

19.
The eye and its associated tissues including the lacrimal system and lids have evolved several defence mechanisms to prevent microbial invasion. Included among this armory are several host-defence peptides. These multifunctional molecules are being studied not only for their endogenous antimicrobial properties but also for their potential therapeutic effects. Here the current knowledge of host-defence peptide expression in the eye will be summarised. The role of these peptides in eye disease will be discussed with the primary focus being on infectious keratitis, inflammatory conditions including dry eye and wound healing. Finally the potential of using host-defence peptides and their mimetics/derivatives for the treatment and prevention of eye diseases is addressed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号