首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Francisella tularensis is one of the most infectious human pathogens known. In the past, both the former Soviet Union and the US had programs to develop weapons containing the bacterium. We report the complete genome sequence of a highly virulent isolate of F. tularensis (1,892,819 bp). The sequence uncovers previously uncharacterized genes encoding type IV pili, a surface polysaccharide and iron-acquisition systems. Several virulence-associated genes were located in a putative pathogenicity island, which was duplicated in the genome. More than 10% of the putative coding sequences contained insertion-deletion or substitution mutations and seemed to be deteriorating. The genome is rich in IS elements, including IS630 Tc-1 mariner family transposons, which are not expected in a prokaryote. We used a computational method for predicting metabolic pathways and found an unexpectedly high proportion of disrupted pathways, explaining the fastidious nutritional requirements of the bacterium. The loss of biosynthetic pathways indicates that F. tularensis is an obligate host-dependent bacterium in its natural life cycle. Our results have implications for our understanding of how highly virulent human pathogens evolve and will expedite strategies to combat them.  相似文献   

2.
Cancer cells frequently have disease-specific chromosome rearrangements. It is poorly understood why translocations between chromosomes recur at specific breakpoints in the genome. Here we provide evidence that higher-order spatial genome organization is a contributing factor in the formation of recurrent translocations. We show that MYC, BCL and immunoglobulin loci, which are recurrently translocated in various B-cell lymphomas, are preferentially positioned in close spatial proximity relative to each other in normal B cells. Loci in spatial proximity are non-randomly positioned towards the nuclear interior in normal B cells. This locus proximity is the consequence of higher-order genome structure rather than a property of individual genes. Our results suggest that the formation of specific translocations in human lymphomas, and perhaps other tissues, is determined in part by higher-order spatial organization of the genome.  相似文献   

3.
4.
Salmonella enterica serovars often have a broad host range, and some cause both gastrointestinal and systemic disease. But the serovars Paratyphi A and Typhi are restricted to humans and cause only systemic disease. It has been estimated that Typhi arose in the last few thousand years. The sequence and microarray analysis of the Paratyphi A genome indicates that it is similar to the Typhi genome but suggests that it has a more recent evolutionary origin. Both genomes have independently accumulated many pseudogenes among their approximately 4,400 protein coding sequences: 173 in Paratyphi A and approximately 210 in Typhi. The recent convergence of these two similar genomes on a similar phenotype is subtly reflected in their genotypes: only 30 genes are degraded in both serovars. Nevertheless, these 30 genes include three known to be important in gastroenteritis, which does not occur in these serovars, and four for Salmonella-translocated effectors, which are normally secreted into host cells to subvert host functions. Loss of function also occurs by mutation in different genes in the same pathway (e.g., in chemotaxis and in the production of fimbriae).  相似文献   

5.
The availability of complete genome sequence from 12 Drosophila species presents the opportunity to examine how natural selection has affected patterns of gene family evolution and sequence divergence among different components of the innate immune system. We have identified orthologs and paralogs of 245 Drosophila melanogaster immune-related genes in these recently sequenced genomes. Genes encoding effector proteins, and to a lesser extent genes encoding recognition proteins, are much more likely to vary in copy number across species than genes encoding signaling proteins. Furthermore, we can trace the apparent recent origination of several evolutionarily novel immune-related genes and gene families. Using codon-based likelihood methods, we show that immune-system genes, and especially those encoding recognition proteins, evolve under positive darwinian selection. Positively selected sites within recognition proteins cluster in domains involved in recognition of microorganisms, suggesting that molecular interactions between hosts and pathogens may drive adaptive evolution in the Drosophila immune system.  相似文献   

6.
New diseases of humans, animals and plants emerge regularly. Enhanced virulence on a new host can be facilitated by the acquisition of novel virulence factors. Interspecific gene transfer is known to be a source of such virulence factors in bacterial pathogens (often manifested as pathogenicity islands in the recipient organism) and it has been speculated that interspecific transfer of virulence factors may occur in fungal pathogens. Until now, no direct support has been available for this hypothesis. Here we present evidence that a gene encoding a critical virulence factor was transferred from one species of fungal pathogen to another. This gene transfer probably occurred just before 1941, creating a pathogen population with significantly enhanced virulence and leading to the emergence of a new damaging disease of wheat.  相似文献   

7.
Tandemly repeated DNA sequences are highly dynamic components of genomes. Most repeats are in intergenic regions, but some are in coding sequences or pseudogenes. In humans, expansion of intragenic triplet repeats is associated with various diseases, including Huntington chorea and fragile X syndrome. The persistence of intragenic repeats in genomes suggests that there is a compensating benefit. Here we show that in the genome of Saccharomyces cerevisiae, most genes containing intragenic repeats encode cell-wall proteins. The repeats trigger frequent recombination events in the gene or between the gene and a pseudogene, causing expansion and contraction in the gene size. This size variation creates quantitative alterations in phenotypes (e.g., adhesion, flocculation or biofilm formation). We propose that variation in intragenic repeat number provides the functional diversity of cell surface antigens that, in fungi and other pathogens, allows rapid adaptation to the environment and elusion of the host immune system.  相似文献   

8.
A major obstacle to creating precisely expressed transgenes lies in the epigenetic effects of the host chromatin that surrounds them. Here we present a strategy to overcome this problem, employing a Gal4-inducible luciferase assay to systematically quantify position effects of host chromatin and the ability of insulators to counteract these effects at phiC31 integration loci randomly distributed throughout the Drosophila genome. We identify loci that can be exploited to deliver precise doses of transgene expression to specific tissues. Moreover, we uncover a previously unrecognized property of the gypsy retrovirus insulator to boost gene expression to levels severalfold greater than at most or possibly all un-insulated loci, in every tissue tested. These findings provide the first opportunity to create a battery of transgenes that can be reliably expressed at high levels in virtually any tissue by integration at a single locus, and conversely, to engineer a controlled phenotypic allelic series by exploiting several loci. The generality of our approach makes it adaptable to other model systems to identify and modify loci for optimal transgene expression.  相似文献   

9.
Bacterial pathogens evolve during the infection of their human host(1-8), but separating adaptive and neutral mutations remains challenging(9-11). Here we identify bacterial genes under adaptive evolution by tracking recurrent patterns of mutations in the same pathogenic strain during the infection of multiple individuals. We conducted a retrospective study of a Burkholderia dolosa outbreak among subjects with cystic fibrosis, sequencing the genomes of 112 isolates collected from 14 individuals over 16 years. We find that 17 bacterial genes acquired nonsynonymous mutations in multiple individuals, which indicates parallel adaptive evolution. Mutations in these genes affect important pathogenic phenotypes, including antibiotic resistance and bacterial membrane composition and implicate oxygen-dependent regulation as paramount in lung infections. Several genes have not previously been implicated in pathogenesis and may represent new therapeutic targets. The identification of parallel molecular evolution as a pathogen spreads among multiple individuals points to the key selection forces it experiences within human hosts.  相似文献   

10.
The genome of Theobroma cacao   总被引:2,自引:0,他引:2  
We sequenced and assembled the draft genome of Theobroma cacao, an economically important tropical-fruit tree crop that is the source of chocolate. This assembly corresponds to 76% of the estimated genome size and contains almost all previously described genes, with 82% of these genes anchored on the 10 T. cacao chromosomes. Analysis of this sequence information highlighted specific expansion of some gene families during evolution, for example, flavonoid-related genes. It also provides a major source of candidate genes for T. cacao improvement. Based on the inferred paleohistory of the T. cacao genome, we propose an evolutionary scenario whereby the ten T. cacao chromosomes were shaped from an ancestor through eleven chromosome fusions.  相似文献   

11.
Human endogenous retroviruses (HERVs), which are remnants of past retroviral infections of the germline cells of our ancestors, make up as much as 8% of the human genome and may even outnumber genes. Most HERVs seem to have entered the genome between 10 and 50 million years ago, and they comprise over 200 distinct groups and subgroups. Although repeated sequence elements such as HERVs have the potential to lead to chromosomal rearrangement through homologous recombination between distant loci, evidence for the generality of this process is lacking. To gain insight into the expansion of these elements in the genome during the course of primate evolution, we have identified 23 new members of the HERV-K (HML-2) group, which is thought to contain the most recently active members. Here we show, by phylogenetic and sequence analysis, that at least 16% of these elements have undergone apparent rearrangements that may have resulted in large-scale deletions, duplications and chromosome reshuffling during the evolution of the human genome.  相似文献   

12.
13.
DNA methylation is extensively reprogrammed during the early phases of mammalian development, yet genomic targets of this process are largely unknown. We optimized methylated DNA immunoprecipitation for low numbers of cells and profiled DNA methylation during early development of the mouse embryonic lineage in vivo. We observed a major epigenetic switch during implantation at the transition from the blastocyst to the postimplantation epiblast. During this period, DNA methylation is primarily targeted to repress the germline expression program. DNA methylation in the epiblast is also targeted to promoters of lineage-specific genes such as hematopoietic genes, which are subsequently demethylated during terminal differentiation. De novo methylation during early embryogenesis is catalyzed by Dnmt3b, and absence of DNA methylation leads to ectopic gene activation in the embryo. Finally, we identify nonimprinted genes that inherit promoter DNA methylation from parental gametes, suggesting that escape of post-fertilization DNA methylation reprogramming is prevalent in the mouse genome.  相似文献   

14.
15.
To test the hypothesis that the human genome project will uncover many genes not previously discovered by sequencing of expressed sequence tags (ESTs), we designed and produced a set of microarrays using probes based on open reading frames (ORFs) in 350 Mb of finished and draft human sequence. Our approach aims to identify all genes directly from genomic sequence by querying gene expression. We analysed genomic sequence with a suite of ORF prediction programs, selected approximately one ORF per gene, amplified the ORFs from genomic DNA and arrayed the amplicons onto treated glass slides. Of the first 10,000 arrayed ORFs, 31% are completely novel and 29% are similar, but not identical, to sequences in public databases. Approximately one-half of these are expressed in the tissues we queried by microarray. Subsequent verification by other techniques confirmed expression of several of the novel genes. Expressed sequence tags (ESTs) have yielded vast amounts of data, but our results indicate that many genes in the human genome will only be found by genomic sequencing.  相似文献   

16.
Legionella pneumophila, the causative agent of Legionnaires' disease, replicates as an intracellular parasite of amoebae and persists in the environment as a free-living microbe. Here we have analyzed the complete genome sequences of L. pneumophila Paris (3,503,610 bp, 3,077 genes), an endemic strain that is predominant in France, and Lens (3,345,687 bp, 2,932 genes), an epidemic strain responsible for a major outbreak of disease in France. The L. pneumophila genomes show marked plasticity, with three different plasmids and with about 13% of the sequence differing between the two strains. Only strain Paris contains a type V secretion system, and its Lvh type IV secretion system is encoded by a 36-kb region that is either carried on a multicopy plasmid or integrated into the chromosome. Genetic mobility may enhance the versatility of L. pneumophila. Numerous genes encode eukaryotic-like proteins or motifs that are predicted to modulate host cell functions to the pathogen's advantage. The genome thus reflects the history and lifestyle of L. pneumophila, a human pathogen of macrophages that coevolved with fresh-water amoebae.  相似文献   

17.
We present here a Sleeping Beauty-based transposition system that offers a simple and efficient way to investigate the regulatory architecture of mammalian chromosomes in vivo. With this system, we generated several hundred mice and embryos, each with a regulatory sensor inserted at a random genomic position. This large sampling of the genome revealed the widespread presence of long-range regulatory activities along chromosomes, forming overlapping blocks with distinct tissue-specific expression potentials. The presence of tissue-restricted regulatory activities around genes with widespread expression patterns challenges the gene-centric view of genome regulation and suggests that most genes are modulated in a tissue-specific manner. The local hopping property of Sleeping Beauty provides a dynamic approach to map these regulatory domains at high resolution and, combined with Cre-mediated recombination, allows for the determination of their functions by engineering mice with specific chromosomal rearrangements.  相似文献   

18.
Now that some genomes have been completely sequenced, the ability to direct specific mutations into genomes is particularly desirable. Here we present a method to create mutations in the Caenorhabditis elegans genome efficiently through transgene-directed, transposon-mediated gene conversion. Engineered deletions targeted into two genes show that the frequency of obtaining the desired mutation was higher using this approach than using standard transposon insertion-deletion approaches. We also targeted an engineered green fluorescent protein insertion-replacement cassette to one of these genes, thereby confirming that custom alleles of different types can be created in vitro to make the corresponding mutations in vivo. This approach should also be applicable to heterologous transposons in C. elegans and other organisms, including vertebrates.  相似文献   

19.
Weil CF  Kunze R 《Nature genetics》2000,26(2):187-190
Excision by transposons is associated with chromosome breaks; generally, host-cell proteins repair this damage, often introducing mutations. Many transposons also use host proteins in the transposition mechanism or in regulation. Transposition in systems lacking host factors that influence the behaviour of these transpositions is useful in determining what those factors are and how they work. In addition, features of transposition and regulation intrinsic to the element itself can be determined. Maize Activator/Dissociation (Ac/Ds) elements transpose in a wide variety of heterologous plants, but their characteristics in these other systems differ from those in maize, including their response to increasing genetic dosage and the types of repair products recovered following excision. Two Arabidopsis thaliana mutants (iae1 and iae2) show increased Ac transposition frequencies. These mutants, and the differences mentioned above, suggest the involvement of host proteins in Ac/Ds activity and potential differences between these proteins among plant species. Here we report that Ac/Ds elements, members of the hAT (hobo, Ac, Tam3) superfamily, transpose in the yeast Saccharomyces cerevisiae, an organism lacking class II ('cut and paste') transposons. This demonstrates that plant-specific proteins are not essential for Ac/Ds transposition. The yeast system is valuable for dissecting the Ac/Ds transposition mechanism and identifying host factors that can influence transposition and the repair of DNA damage induced by Ac/Ds. Mutations caused by Ds excision in yeast suggest formation of a DNA-hairpin intermediate, and reinsertions occur throughout the genome with a frequency similar to that in plants. The high proportion of Ac/Ds reinsertions also makes this system an in vivo mutagenesis and reverse genetics tool in yeast and, presumably, other eukaryotic systems.  相似文献   

20.
Although the complete genome sequences of over 50 representative species have revealed the many duplicated genes in all three domains of life, the roles of gene duplication in organismal adaptation and biodiversity are poorly understood. In addition, the evolutionary forces behind the functional divergence of duplicated genes are often unknown, leading to disagreement on the relative importance of positive Darwinian selection versus relaxation of functional constraints in this process. The methodology of earlier studies relied largely on DNA sequence analysis but lacked functional assays of duplicated genes, frequently generating contentious results. Here we use both computational and experimental approaches to address these questions in a study of the pancreatic ribonuclease gene (RNASE1) and its duplicate gene (RNASE1B) in a leaf-eating colobine monkey, douc langur. We show that RNASE1B has evolved rapidly under positive selection for enhanced ribonucleolytic activity in an altered microenvironment, a response to increased demands for the enzyme for digesting bacterial RNA. At the same time, the ability to degrade double-stranded RNA, a non-digestive activity characteristic of primate RNASE1, has been lost in RNASE1B, indicating functional specialization and relaxation of purifying selection. Our findings demonstrate the contribution of gene duplication to organismal adaptation and show the power of combining sequence analysis and functional assays in delineating the molecular basis of adaptive evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号