共查询到18条相似文献,搜索用时 46 毫秒
1.
基于分层聚类的k-means算法 总被引:8,自引:0,他引:8
为了更好地实现聚类,在分析分层聚类和k-means算法优缺点的基础上提出了一种改进的聚类算法.改进算法将分层聚类和k-means聚类算法的优点相结合,首先采用分层聚类,得到一个初始的聚类结果,然后应用k-means聚类算法继续聚类.实验结果表明,改进算法较原先传统的聚类算法,不但算法执行速度快、效率高,而且聚类效果也比较好。 相似文献
2.
3.
Web日志模糊聚类算法的研究 总被引:3,自引:0,他引:3
本文提出了一种新的Web事务模糊聚类算法.给出了新的Web事务定义和相异度定义,聚类准则函数是所有样本与C个代表中心的相异度之和,我们的目标是使这个聚类准则函数最小.同时给出了改进算法.经过试验证明,改进的算法更有效. 相似文献
4.
为了提高银行客户分类的正确率,使银行的收益最大化,提出一种基于改进K均值聚类的银行客户分类算法.算法定义了类间最大相似度均值(AMS),并根据该定义确定最佳聚类数.当计算出的当下AMS值比前一次的AMS值小时,根据距离原则选择初始聚类中心;当计算出的当下AMS值比前一次的AMS值大时,把该最小AMS值相匹配的聚类中心看作初始聚类中心.利用最佳聚类数和初始聚类中心实现银行客户的细分.仿真结果表明,提出的算法能够跳出局部最优,并提高客户分类的正确率. 相似文献
5.
DBSCAN算法是一种基于密度的空间数据聚类方法,聚类速度快,且能够有效处理噪声点和发现任意形状的空间聚类.但是数据量大时要求较大的内存支持和IO消耗,当空间聚类的密度不均匀,聚类间距离相差很大时,聚类质量较差.本文在DBSCAN算法的基础上提出一个划分不同密度分别聚类的算法.测试结果表明可以改善聚类效果. 相似文献
6.
7.
陈亚峰 《济源职业技术学院学报》2014,(4):4-7
针对K-均值算法易受孤立点影响、对初始中心点选择敏感、易陷入局部最优的问题,对K-均值算法进行了改进,提出了一种自适应优化选择初始中心点的K-均值算法。实验结果表明,改进后的算法不仅较大程度上弥补了传统K-均值算法的不足,并且提高了聚类的稳定性和准确率。 相似文献
8.
为了在动态环境中快速地跟踪变化后的最优解集,提出一种基于聚类预测模型的动态多目标优化算法.通过对种群聚类,提高预测解集的分布性与广泛性,为分段预测做准备,然后利用历史信息对每个子类的中心点和形状进行预测,在环境变化后,预测产生的每个子类共同构成整个新的初始种群,有引导性地增加了种群的多样性,使算法能快速跟踪新的最优解集.在标准动态测试问题上进行算法测试,实验结果表明所提算法能快速地适应环境的动态变化,所获解集具有较好的收敛性和分布性. 相似文献
9.
为自动提取CT肺部肿瘤,辅助医生对患病部位进行诊断和治疗,利用K均值聚类算法自动提取肺部肿瘤和剩余肺部图像,并分别和影像医生手工分割的肺部肿瘤和剩余肺部图像作对比。结果表明,自动提取的肺部肿瘤图像与专业医学影像医生手工提取的肺部肿瘤图像在外形、灰度和方差方面非常接近,说明利用K均值聚类算法自动提取肺部肿瘤的方法是有效的、可行的。 相似文献
10.
11.
近几年来,单元化制造系统(CMS)作为一种由于能满足不同客户需求、缩短产品生产周期、提高企业的全球竞争力的先进制造组织模式而备受关注。本文提出了一种新的矩阵聚类方法(HERBAL)设计制造单元,并探讨了该方法与其它聚类方法如ROC、ROC2、DCA等方法在成组效率、成组功效等评价指标上的优劣,证明了该方法的可行性和高效率。同时该方法中的设备_零件矩阵(MCM)中的二元值元素,采用反映实际生产中的流程时间替代,可使聚类结果更符合实际的生产需求。 相似文献
12.
13.
基于免疫聚类和遗传算法的RBF网络设计方法 总被引:7,自引:0,他引:7
基于人工免疫机制和遗传算法,提出了一种训练径向基函数(RBF)网络的混合算法.该算法采用了一种可以实现数据聚类的人工免疫机制根据输入数据集合自适应地确定RBF网络隐层中心的数量和初始位置;采用遗传算法训练RBF网络,能够使优化过程趋于全局最优.将该方法用于多用户检测问题的实验结果表明,采用这种混合算法训练的RBF网络结构精简,具有很好的抗多址干扰的性能. 相似文献
14.
15.
鉴于网络入侵检测数据样本特征属性的异构性及贡献率不同,提出一种加权特征的异构数据相似性度量法来反应网络数据样本间的相似程度.针对基于模糊C-均值聚类的网络入侵检测算法聚类数目难以确定的问题,提出了一种自动确定最佳聚类数的无监督模糊聚类入侵检测算法.通过KDDcup1999数据集的仿真对比实验,结果表明本文算法能找到最佳... 相似文献
16.
懒散关联分类针对每个待分类实例的特征进行分类关联规则的挖掘,通常能取得较高的准确率。然而,由于某些数据集中存在一些质量不好的特征,将影响懒散关联分类的准确率。此外,分类耗时较长是懒散关联分类另一个缺点。针对上述问题,提出了一种基于信息熵的懒散关联分类算法。该算法以信息熵度量属性值的质量,仅选取每个待分类实例中最好的k个属性值,将得到规模较小且与待分类实例紧密相关的训练子集,从中高效挖掘到高质量的规则。实验表明,与懒散关联分类相比,基于信息熵的懒散关联分类方法提高了分类准确率,并极大减少了运行时间。 相似文献
17.