首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对墩底沉降引起的桥上CRTSⅡ型板式无砟轨道纵向受力与变形问题,基于有限元法和梁-板-轨相互作用机理,建立多跨简支梁和大跨连续梁桥上CRTSⅡ型板式无砟轨道无缝线路空间耦合模型,研究各墩底均匀沉降及差异沉降条件下无砟轨道和桥梁结构纵向力与位移分布规律.结果表明:各墩底发生均匀沉降时,两侧桥台及相邻桥墩顶为薄弱位置,两种桥上轨道结构纵向力与位移最大值及其变化趋势基本一致,且随沉降量的增加而线性增大;各墩底发生差异沉降时,沉降值突变的相邻桥墩顶为薄弱位置,该处轨道结构纵向力与位移随着沉降差值的增加而明显增大;需严格把控长大梁桥墩底桩基础的施工质量,避免各墩底发生差异沉降;研究成果可为桥上CRTSⅡ型板式无砟轨道无缝线路设计改进及工程建设提供参考.  相似文献   

2.
为研究地震作用下高铁桥梁挡块与垫石间的横向碰撞效应,基于ANSYS软件建立高铁简支-连续组合桥梁(2×32 m简支梁+(48+80+48) m连续梁+2×32 m简支梁)横向地震碰撞杆系有限元模型,该模型考虑轨道系统(CRTSⅡ型)约束作用、上部结构与垫石间偏心距、挡块材料非线性、支座非线性和墩柱弹塑性的影响。采用非线性地震反应时程分析方法,讨论轨道系统约束作用、横向限位挡块和挡块-垫石间距等因素对桥梁结构横向地震碰撞效应的影响,并优化连续梁桥墩挡块间隙,探究橡胶缓冲装置的减碰效果。研究结果表明:轨道系统约束作用会改变桥梁结构的动力特性与地震响应,放大墩底剪力横向分配的不均匀性;在强震作用下,挡块横向限位效果较明显;当连续梁桥墩挡块-垫石间距为2~3 cm时,横向地震响应峰值均较小,适当增大中墩挡块-垫石间距效果更佳;橡胶缓冲装置会降低连续梁桥墩梁横向相对位移峰值和挡块碰撞力,且减震效果与橡胶厚度及布设方式有关。  相似文献   

3.
桥墩横向变形是曲线连续刚构桥产生径向位移和扭转变形的主要原因,为探究预应力斜墩对曲线连续刚构桥施工过程变形的影响规律,通过矩形斜墩在曲梁偏压和桥墩预应力作用下墩顶横向位移和转角计算公式的理论推导,阐释了预应力斜墩在曲线连续刚构桥悬臂施工过程中变形的主要规律;以实际工程为背景,通过不同曲率半径的曲线连续刚构桥数值模拟分析,研究了曲率半径对该类桥梁各施工荷载作用下空间变形的影响规律.结果表明:斜墩的斜腿构造和预应力对减小曲梁的径向位移和扭转变形作用明显;最大悬臂状态曲梁的径向位移和扭转变形由悬臂根部向悬臂端先增大后减小,且峰值随曲率半径的减小而向桥墩靠近;直线连续刚构桥的径向位移和扭转变形产生于桥墩的横向变形,而曲线连续刚构桥还包含了曲梁自身的径向位移和扭转变形.预应力斜墩曲线连续刚构桥施工过程变形复杂,桥梁施工控制尤其需要关注其径向变形和扭转变形.  相似文献   

4.
为了研究在近断层脉冲型地震作用下高速铁路桥梁-轨道系统的动力响应规律,针对高速铁路线上最常用的简支梁形式结构,以某8×32.7 m高速铁路简支箱梁桥为例.建立了考虑简支梁与CRTS Ⅰ型板式无砟轨道之间相互作用的桥梁-轨道模型,讨论了具有破裂前方脉冲、滑冲脉冲、无脉冲型近断层地震动对桥梁-轨道系统的影响及扣件阻力改变时桥梁-轨道系统动力响应的变化.结果表明:三种脉冲类型地震动作用下钢轨的受力和变形规律保持一致,脉冲型地震动较无脉冲型地震动增加了约20%钢轨应力和位移.相对于轨道系统,桥墩对脉冲类型更为敏感,在破裂前方脉冲和滑冲脉冲地震作用下,桥墩的墩顶最大位移比无脉冲地震动分别增大了106.6%和148.6%,墩底弯矩和剪力也有明显增大,在进行高速铁路桥梁抗震设计时应考虑脉冲类型对桥梁结构的影响.扣件纵向阻力从5 kN/组增大到15 kN/组时,墩顶最大位移降低了10%,但钢轨应力和位移峰值约为原来的2倍.  相似文献   

5.
以某市双地道基坑开挖对既有高架桥桥墩变形影响为研究背景,重点研究在轻轨高架桥正常运营情况下利用数值模拟对不同施工方案造成高架桥桥墩位移变形以及在实际施工过程中收集桥墩变形数据总结相关规律。运用MIDAS-GTS建立三维整体计算模型来模拟地道基坑施工开挖次序,进而动态预测基坑支护结构及高架桥桥墩的位移变形状态,分析了双地道开挖在两种不同施工方案下的数据,得出更有利于施工安全建设的方案。计算结果表明:地道基坑开挖高架桥桥墩水平位移最大值为-3.68 mm,竖向位移最大值为2.14 mm;地道基坑支护结构水平位移最大值为11.89 mm。数值模拟结果与主要监测数据对比分析表明,地道基坑开挖在各个阶段对高架桥桥墩的变形影响均在规范限值以内并与实际监测数据走向基本一致。研究结果表明:该项目数值模拟施工过程中优先施工距桥墩较远的基坑对桥墩产生的扰动较小;较好的体现实际施工过程中桥墩的变形趋势以及变形程度;基坑施工至承台位置时对桥墩变形增量达到最大。  相似文献   

6.
为研究地震作用下桥上CRTSⅢ型板式无砟轨道系统的动力响应,以11×32 m简支梁桥为例,基于有限元法和梁-轨-板相互作用原理,建立了桥上CRTSⅢ型板式无砟轨道无缝线路精细化空间耦合模型,分析了不同地震波及地震动强度对系统受力变形的影响.研究结果表明:与El-Centro波相比,天津宁河波对系统动力响应有显著的增强效应,钢轨应力曲线均关于跨中呈反对称分布,最大拉压应力为206.5 MPa;各层间构件受力变形曲线均关于桥梁纵向呈轴对称分布,钢轨位移线形平滑,在中跨桥右侧1/3处达到最大,为100.6 mm;轨道板、自密实混凝土层、底座板位移随桥跨数的增加呈阶梯增减变化,最大值出现于第6跨桥,轨板相对位移在最右侧梁缝处达到最大,各结构的纵向力较小;随着地震动强度的提高,系统受力变形显著增加;与设计地震相比,罕遇地震下轨板相对位移最大值增加了146.9%,可达85.5 mm,极易导致轨下胶垫窜出引发扣件失效;左侧桥台与相邻固定支座墩顶最大位移差值显著,为96.6 mm,增加了落梁风险;对于地震区桥上无缝线路,需加强对薄弱位置处轨板相对位移以及相邻墩/台顶位移的关注.  相似文献   

7.
为研究钢筋混凝土桥墩在强震下的残余变形机理,建立了考虑桩-土-结构相互作用(pile-soil-structure interaction, PSSI)的桩柱式桥墩抗震数值分析模型,考虑了桥墩、桩身以及桩-土相互作用等非线性行为.首先,基于单桩拟静力试验结果验证了建模方法的准确性,然后通过与墩底固结模型的对比,分析了近断层地震动下PSSI对桩柱式桥墩墩顶残余位移的影响.结合结构自振周期,桩身残余位移、曲率延性系数,土体非线性反应等结果,对墩顶残余变形的机理进行了讨论.结果表明:考虑PSSI的桩柱式桥墩自振周期为墩底固结模型的2.0~2.2倍,PSSI显著增加了墩顶的最大位移和残余位移.随着砂土相对密实度减少,结构自振周期、墩顶最大位移和残余位移均呈增大的趋势.桩身的残余变形主要集中于桩顶4倍桩径深度范围内,且随着砂土相对密实度增加,桩身残余变形深度减少.桩身塑性变形集中于地表下1.3~5.3倍桩径范围内,且随着砂土相对密实度增加,桩身塑性区范围减少,桩身截面最大曲率增大.  相似文献   

8.
为探明高速铁路大跨度连续梁桥上CRTSII型板式无砟轨道断板工况下受力特性,基于梁轨相互作用原理,采用有限元软件MIDAS建立了钢轨-轨道板-底座板-梁体-桥墩空间一体化纵向力计算模型,选取跨径(60.75+3×100+60.75)m的沪昆客运专线长玉段涟水大跨连续梁桥工程实例,研究计算了断板工况下桥上各层轨道结构相对位移,以及纵向附加力的分布和传递规律.结果表明:连续梁右端处,轨道板和底座板最有可能断裂;断缝处钢轨附加拉应力最大,其值足以引起断轨;断缝处钢轨-轨道板相对位移较大,钢轨扣件将会进入塑性状态而被拉断;断缝处及连续梁固结机构处轨道板-底座板相对位移较大,位移量足以导致CA砂浆层与轨道板结合失效;断缝两侧固结机构处剪力钢筋承受附加力较大,剪力筋会被剪断;轨道结构超过70%的纵向反力由左右两侧端刺承担.  相似文献   

9.
为研究温度梯度荷载作用下多跨简支梁桥上CRTS Ⅱ型板受力变形问题,基于有限元法建立了多跨简支梁桥上CRTS Ⅱ型板式无砟轨道无缝线路(Continuous Welded Rail,CWR)空间精细化有限元模型,分析了竖向、横向温度梯度荷载作用下轨道、桥梁结构纵向受力与变形特性.研究结果表明:竖向温梯荷载作用下,钢轨在桥梁两端的主端刺位置伸缩力与位移达到最大值;轨道板出现翘曲应力,其上下表面应力差随温度梯度增大而增大,轨道板竖向温度梯度为90℃/m时,上下表面应力差最大值较50℃/m时增加了44%.双向温梯荷载作用下,向阳侧桥梁纵向位移明显高于背阴侧,钢轨伸缩力略高于背阴侧;随着横向温度梯度的增大,阴阳两侧结构纵向位移差、相对位移差和应力差均呈现逐渐增大趋势.在高温差地区需重点关注轨道板因上下表面应力差引起的翘曲变形问题.研究成果可为桥上CRTS Ⅱ型板式无砟轨道无缝线路的设计、施工和维护提供理论依据.  相似文献   

10.
基于梁-轨相互作用理论建立线-板-桥-墩空间耦合模型,研究了无砟轨道简支梁桥墩纵向刚度对钢轨附加力及断缝值的影响,给出了市域铁路简支梁桥墩纵向刚度限值的控制因素及合理值.结果表明:增大桥墩纵向刚度可减小钢轨附加总应力和梁-轨相对位移,不同于有砟轨道简支梁桥,市域铁路无砟轨道简支梁桥墩纵向刚度限值由钢轨强度控制;建议24,32,48 m简支梁桥上铺设U71Mn钢轨和常阻力扣件,温暖区域桥墩刚度限值分别取5,6和15 MN/m,寒冷区域取5,12和54 MN/m;64 m和80 m简支梁上铺设U75V钢轨和常阻力扣件,温暖区域刚度限值分别取22 MN/m和70 MN/m,寒冷区域取84 MN/m和240 MN/m;当寒冷区域80 m简支梁桥两侧梁端铺设小阻力扣件时,桥墩刚度限值可减小至84 MN/m.  相似文献   

11.
基于列车-有砟及无砟轨道系统空间振动计算模型,采用列车脱轨能量随机分析方法,分别计算货物列车在有砟、无砟轨道上的脱轨全过程,得出2种车轨系统横向振动极限抗力作功及其动力响应,分析货物列车的运行安全性、2种车轨系统的空间振动特性。研究结果表明:与有砟轨道相比,无砟轨道的抗脱轨能力最大可提高45.9%,车速为90 km/h时无砟轨道上车体竖向Sperling平稳性指标、轮对横向力、轮轨竖向力分别减小73.5%,22.1%和27.3%;无砟轨道各部件横向位移、加速度均小于有砟轨道相应值,而钢轨竖向位移大于有砟轨道相应值,但由于无砟轨道竖向位移主要由扣件承担,导致钢轨传至道床板的竖向位移衰减75.3%;无砟轨道各部件竖向加速度均大于有砟轨道相应值,产生的振动、噪声对周围建筑影响更大。建议在重载铁路新线设计中优先采用无砟轨道,但应采取减振降噪措施。  相似文献   

12.
为了从理论上验证新型护轨在小半径曲线上的防脱、增稳和减磨作用,以列车-曲线轨道系统空间振动分析模型为基础,考虑新型护轨的结构特点及其与车轮、钢轨之间相互作用,建立带新型护轨装置的曲线轨道-列车系统空间振动分析模型.采用Fortran语言编制相应计算程序,利用现场试验结果验证本方法及程序的可靠性;分析新型护轨对系统空间振动响应的影响规律.计算结果表明:计算得出的护轨力分摊曲线外轨轮缘力比例达38.81%,与通过试验得到的新型护轨能够分摊33.3%~40.0%的曲线外轨轮缘力的结论相符;在试验工况及参数条件下,新型护轨可使车体、轮对及曲线外轨的横向位移分别减少28.62%,37.67%及14.64%,明显改善货物列车运行的平稳性.  相似文献   

13.
基于能量原理的框架桥墩地震力分析   总被引:7,自引:2,他引:7  
用Lagrange方程导出了框架桥墩地震振动方程,并给出了相应的基频和振型参与系数的近似计算公式。根据框架桥墩结构特点构造基本振型函数,将框架桥墩的横向总变形分解为墩身的弹性变形与基础转动和平动所产生的刚体位移的叠加,其中弹性变形由墩顶水平推力和约束力矩联合产生。分别讨论了横向设置防震限位构造与不设限位构造对框架桥墩地震力的影响。研究表明,现行公路桥梁抗震规范方法计算值偏小。本文方法适应于各种基础类型的桥墩,对新抗震规范修订具有参考价值。  相似文献   

14.
为分析有轨电车嵌入式轨道桥上无缝线路梁轨相互作用机理并获得最优参数组合,根据梁轨相互作用原理,建立了多跨简支梁桥上嵌入式轨道桥上无缝线路力学分析模型,采用正交试验方法研究钢轨类型、高分子材料纵向阻力、桥墩纵向刚度、桥台纵向刚度和桥梁跨数这5种因素对嵌入式轨道桥上无缝线路力学特性的影响.研究结果表明:采用小阻力高分子材料可明显减小钢轨附加作用力,但轨板相对位移和断缝值有较大增长;当高分子材料纵向阻力约为5.0×10~6 N/m时,轨板相对位移达到限值,高分子材料产生拉裂破坏;最佳简支梁桥上有轨电车嵌入式轨道无缝线路设计方案为钢轨类型60R2槽型轨、高分子材料纵向阻力2.0×10~7 N/m、桥墩纵向刚度3.0×10~7 N/m、桥台纵向刚度2.0×10~8 N/m,桥梁跨数根据实际工程而定.  相似文献   

15.
为确保盾构安全顺利地下穿地铁运营U形槽线路,避免下穿过程中引起U形槽结构过量沉降,影响运营安全,以北京新机场线2、3号风井盾构区间大直径土压平衡盾构下穿既有大兴线U形槽为工程背景,研究了砂卵石地层盾构隧道开挖对U形槽变形影响。通过对U形槽结构竖向位移、横向位移、轨道竖向位移、轨距等大量监测数据进行分析,得出盾构隧道开挖过程中既有结构的变形规律。结果表明:下方隧道开挖会造成U形槽和轨道结构产生不均匀隆起、沉降变形,竖向变形在2. 0 mm以内;隧道横向变形表现为不规则波动,变形在±0. 5 mm以内;轨距变化在±1 mm以内。既有U形槽结构竖向位移与盾构掘进参数关系密切;通过严格控制盾构施工参数,采用二次注浆、深孔注浆方式对管片背后进行填充,可大幅减少结构沉降。研究结果可为控制U形槽结构变形,确保既有线运行的安全提供借鉴。  相似文献   

16.
为确保盾构安全顺利地下穿地铁运营U形槽线路,避免下穿过程中引起U形槽结构过量沉降,影响运营安全,以北京新机场线2、3号风井盾构区间大直径土压平衡盾构下穿既有大兴线U形槽为工程背景,研究了砂卵石地层盾构隧道开挖对U形槽变形影响。通过对U形槽结构竖向位移、横向位移、轨道竖向位移、轨距等大量监测数据进行分析,得出盾构隧道开挖过程中既有结构的变形规律。结果表明:下方隧道开挖会造成U形槽和轨道结构产生不均匀隆起、沉降变形,竖向变形在2. 0 mm以内;隧道横向变形表现为不规则波动,变形在±0. 5 mm以内;轨距变化在±1 mm以内。既有U形槽结构竖向位移与盾构掘进参数关系密切;通过严格控制盾构施工参数,采用二次注浆、深孔注浆方式对管片背后进行填充,可大幅减少结构沉降。研究结果可为控制U形槽结构变形,确保既有线运行的安全提供借鉴。  相似文献   

17.
针对矩形空心-双薄壁组合桥墩纵向刚度的设计方法尚不完善的问题,提出一种基于列车-轨道-桥梁动力相互作用理论的矩形空心-双薄壁组合桥墩纵向刚度确定方法.首先,基于列车-轨道-桥梁动力相互作用理论建立考虑桥轨关系和轮轨关系的列车-轨道-桥梁动力相互作用模型,在此基础上完善钢轨多种附加应力的计算方法;然后,考虑桥墩刚度对扣件...  相似文献   

18.
目的讨论桥墩顶部时程位移、桥墩底部反力-桥墩顶部位移滞回曲线、桥墩根部应力分布及变形状态等分析结果,考察上部结构偏心作用对桥墩地震响应的影响以及内填混凝土钢桥墩的抗震性能效果,探明内填混凝土圆形钢桥墩以及空钢管桥墩在整体结构中的抗震性能.方法采用有限元分析软件ABAQUS,建立三维空间有限元模型,在顺桥向、横桥向分别输入罕遇地震动,进行非线性动力时程分析.结果在顺桥向地震动激励时,上部结构偏心作用对连续梁桥桥墩的动力响应影响较小;在横桥向地震动激励时,随着上部结构偏心率的增加,桥墩最大响应位移也增加,偏心率对桥墩的地震响应影响较大;无论顺桥向和横桥向地震作用,空钢管桥墩均发生了屈服,桥墩根部出现应力集中现象,局部失稳变形过大,丧失承载能力;部分填充混凝土钢桥墩也进入了弹塑性阶段,内填混凝土抑制了钢管局部失稳变形发展.结论钢桥墩填充混凝土后提高了承载能力,减小了最大响应位移,有效地提高了桥梁的抗震能力.  相似文献   

19.
为研究客运列车因曲线超速引起的脱轨规律,基于列车-轨道系统空间振动计算模型,建立客运列车-曲线轨道系统空间振动计算模型。基于该模型,根据列车脱轨能量随机分析方法,提出客运列车曲线超速引起的脱轨全过程计算方法,计算不同曲线半径、外轨超高下列车超速引起的脱轨全过程,分析轮轨接触状态及其相对位置。研究结果表明:据脱轨系数和轮重减载率难以判定客运列车超速时是否脱轨;脱轨车辆位于编组前部,在脱轨前及时预警十分必要;随着曲线半径、外轨超高增大,列车脱轨速度随之增大,脱轨瞬间转向架与钢轨横向相对位移也随之增大;并考虑安全系数1.25,得到转向架与钢轨横向相对位移最大为60.2 mm,这可为研发客运列车曲线超速脱轨报警装置提供参考。  相似文献   

20.
桥上无碴轨道无缝道岔力学特性分析   总被引:6,自引:0,他引:6  
采用有限单元方法,建立了桥上无碴轨道、无缝道岔伸缩力的计算模型,分析了轨温变化幅度、扣件阻力、限位值、间隔铁数量等轨道结构参数对无缝道岔受力及变形的影响.研究表明,桥上无碴轨道无缝道岔的温度力和位移受轨温变化幅度的影响很大,扣件阻力对结构受力也有很大的影响,而限位器、间隔铁阻力参数变化对结构的影响要居次要地位.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号