首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lagrange中值定理的一点注记以定理A的形式给出了当弦的斜率K大于max(f (a),f-(b)或小于min{f' (a),f'0(b)}对Lagrange牛值定理的相关结构。  相似文献   

2.
利用中值定来求一些函数的极限不失为一种方便方法,但在理论上存在着一些问题,为此,本文扩充了函数极限定义,进而可运用Lagrange中什工求极限,并举例说明之。  相似文献   

3.
Lagrange中值定理的一点注记以定理A的形式给出了当弦的斜率k大于max{f’+(a),f’(b)} 或小于min{f’(a),F’_(b)}对;Lagrange牛值定理的相关结果.  相似文献   

4.
张计珍 《太原科技》2000,(3):16-16,18
微分中值定量证明的难点在于构造辅助函数,指出不通过构造辅助函数,而是利用坐标旋转变换,是一种证明微分中值定理的新方法。  相似文献   

5.
在一般分析教程中,Lagrange和Cauchy中值定理都是通过作辅助函数利用Rolle定理来证明的,通过推导,给出Lagrange中值定理的另一个证法.  相似文献   

6.
广义Lagrange中值定理的逆定理   总被引:1,自引:0,他引:1  
  相似文献   

7.
刘桂仙  李凤萍 《科技资讯》2009,(6):235-235,237
为了开阔思路,更好的理解和掌握Lagrange中值定理,本文对Lagrange中值定理的证明方法进行了分析,归纳和总结。  相似文献   

8.
Lagrange中值定理证明中辅助函数作法各式各样,目前采用的主要有如下形式:应用1)-8)中任何一种,用Rolle定理立即可以证明Lagrange中值定理。表面上看作辅助函数要有几分技巧,其实只要用逆向思维来探索,不难发现这些助辅函数形式并非某人一时“聪明”而作出,却都是出自于一个统一的形式。事实上,从Lagrange中值公式的形式类似于前面的处理,即得F(x)=(b-a)f(x)-[f(b)-f(a)]x+c2(2)分别取c2为0;[f(b)-f(a)]a;af(b)-bf(a);bf(a)-af(b),得到辅助函数5)-8)。比较(1)与(2),容易看出(2)是(1)的…  相似文献   

9.
利用具体的例子否定了“Lagrange 中值定理的证明由 Rolle 中值定理通过旋转适当的角度可得到”的说法.  相似文献   

10.
利用罗尔定理和行列式知识建立了一个关于n阶导数的拉格朗日定理。  相似文献   

11.
Lagrange中值定理和介值定理是微分学中的重要定理,通过一个结论与多次应用Lagrange中值定理和介值定理证明该结论的方法具有实际应用价值。  相似文献   

12.
通过构造辅助函数,利用数列极限的性质,给出了Lagrange中值定理的又一种证明方法。  相似文献   

13.
证明Lagrange中值定理的关键是构造一个满足Rolle定理条件的辅助函数,用代数和几何的知识构造出几个辅助函数,从而注明了构造辅助函数的思想方法.  相似文献   

14.
对Rolle中值定理的条件作了改进,把函数可导推广为左或右可导,把有限区间推广为无限区间,把函数在区间端点处的函数值相等推广为可以不等.主要建立了如下的推广定理:设函数f(x)在有限或无限区间(a,b)上连续,f(x)在(a,b)内右(或左)可导,并存在{an},{bn}包括(a,b)使 liman n→∞=a limbn n→∞=b limf(an)n→∞=linf(bn)n→∞=A A为实数或±∞,则存在ξ,η∈(a,b),使得f′+(ξ)≥0,f′+(η)≤0(或f′-(ξ)≥0,f′-(η)≤0。更进一步,设f′+(x)(或f′-(x))在(a,b)内左(或右)连续,则存在ξ∈(a,b)使得f′+(ξ)=0(或f′-(ξ)=0).  相似文献   

15.
宾龙 《科技信息》2010,(18):I0081-I0081
微分中值定理是罗尔定理、拉格朗日中值定理、柯西中值定理的统称。是微分学的基本定理,具有广泛的应用性。本文对这三个中值定理之间的关系做了归纳,并通过利用行列式来构造函数,给出了柯西中值定理的一种新的证明方法。这有利于微分中值定理的学习。  相似文献   

16.
Dini导数意义下的微分中值定理及其应用   总被引:1,自引:0,他引:1  
文章建立了关于含有Dini导数的微分中值定理以及余项含有Dini导数的Taylor公式,并讨论了它们的一些应用。  相似文献   

17.
Lagrange中值定理是微分学中值定理之一,给出闭区间上连续函数的两个性质,应用连续函数的性质和闭区间套定理证明lagrange中值定理。  相似文献   

18.
本文就积分第一中值定理给了一简单的证明。  相似文献   

19.
在本文中,笔者将Lagrange微分学中值定理推广到函数高阶可微的情况,为了指明获得这个推广的过程,文章先叙述微分学Lagrange中值定理,即定理1,然后再叙述函数二阶可微情况下Lagrange中值定理的推广,即定理2,最后叙述函数n阶(n是自然数)可微情况下Lagrange中值定理的推广,即定理3。  相似文献   

20.
通过构造辅助函数,利用数列极限的性质,给出了Lagrange中值定理的又一种证明方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号