首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
为改善聚酰亚胺薄膜的透明性和溶解性,通过Williamson醚化反应较高产率地合成出高纯度的2,2-双[4-(4-氨基-2-三氟甲基苯氧基)苯基]丙烷,该含氟二胺与3,3’,4,4’-联苯四酸二酐(BPDA)在溶剂中缩聚得到聚酰胺酸,热亚胺化得到玻璃化转变温度Tg为350.2℃、在氮气中10%热失重温度为539.8℃、紫外截止波长为390 nm的含氟透明聚酰亚胺,并合成了联苯二酐/二苯醚二胺薄膜BPDA-ODA,通过对两种薄膜热稳定性、透光率、溶解性能的比较发现,在聚酰亚胺分子结构中引入氟原子,在不改变其热稳定性的前提下,可明显改善聚酰亚胺的透明性和溶解性。  相似文献   

2.
采用酯化和催化氢化的方法合成一种含有脂环结构的新型二胺单体1,4-双(4-氨基苯甲酰氧亚甲基)环己烷,并以此单体分别与两种二酐ODPA(二苯醚四羧二酐)、PMDA(均苯四酸二酐),经两步法化学环化制得聚酰亚胺.通过红外光谱表征、热失重分析、溶解性能测试探讨其结构与性能的关系.  相似文献   

3.
为了提高聚酰亚胺的热塑性,制备兼具优异热塑性与耐热性的聚酰亚胺材料,以均苯四甲酸二酐(PMDA)与3,3′,4,4′-联苯四羧酸二酐(s-BPDA)为二酐、4,4′-二氨基二苯醚(ODA)与2,2′-二[4-(4-氨基苯氧基)苯基]丙烷(BAPP)为二胺,通过两步法成功制备了一系列四元共聚热塑性聚酰亚胺,并研究了刚性联苯基团与柔性单体、侧甲基的协同作用对聚酰亚胺材料性能的影响。利用FTIR、XRD、DMA和TGA等测试手段对材料的分子结构、热塑性和耐热性等进行了表征。结果表明:该系列四元共聚聚酰亚胺具有良好的热塑性与耐热性,其中当二酐与二胺的摩尔分数比(PMDA∶s-BPDA∶ODA∶BAPP)为70∶30∶70∶30时,该材料表现出优异的热塑性和耐热性,同时在非质子极性溶剂中表现出较好的溶解性,极大地提高了聚酰亚胺在溶剂或熔融状态下的加工性能。  相似文献   

4.
以二胺单体4–(4’–三氟甲基)苯基–2,6–二(4’–氨基)苯基吡啶(TPBAPP)与六氟二酐(6FDA)为原料采用两步法制备了含三苯基吡啶结构的氟化聚酰亚胺.制备的聚酰亚胺具有优异的综合性能,在强极性和弱极性溶剂中均具有很好的溶解性,其玻璃化转变温度为356°C,5%的热失重温度为538°C.此外,PI膜拉伸强度为68 MPa,弹性模量达到1.25 GPa,在600 nm下的透光率达到83.3%,吸水率为0.56%,介电常数为3.49.本研究可为聚酰亚胺的改性及应用提供数据支撑.  相似文献   

5.
透明、可溶性聚酰亚胺的合成与性能研究   总被引:5,自引:0,他引:5  
采用带有侧基的柔顺性二胺单体3,3′-二甲基-4,4′-二氨基二苯甲烷分别与3,3′,4,4′-二苯醚四羧酸二酐和3,3′,4,4′-二苯酮四段酸二酐共聚,合成了可容于DMF、DMAc、NMP等强权性溶剂的可溶性聚酰亚胺,研究中发现,制备的聚酰亚胺薄膜有一定的透明性,通过和常规聚酰亚胺对比,也有良好的耐热性,热分解温度均在500℃以上。因而作为液晶显示器的光学补偿膜具有实际的应有价值。  相似文献   

6.
为了有效提高膜分离技术对CO2/CH4 混合气的分离效果,以2-双(3,4-二羧基苯基)六氟丙烷二酐(6FDA)为二酐单体、2,4,6-三甲基-1,3-苯二胺(TMPDA)和2,6-二氨基甲苯(2,6-DAT)为二胺单体,制备新型6FDA 型聚酰亚胺共聚物6FDA-TMPDA/2,6-DAT.将金属有机骨架(MOF)材...  相似文献   

7.
将二胺单体1,3 双(4 氨基苯氧基)苯(1,3,4-APB)、3,4 二氨基二苯醚(3,4-ODA)分别与3,3′,4,4′-联苯四酸二酐(s-BPDA)和1,4,5,8 萘四甲酸二酐(NTDA)进行缩聚反应,并在两种不同合成条件下合成三种苯乙炔苯酐(PEPA)封端的聚酰亚胺低聚(PI1、PI2、PI3)。结果表明,含六元酸酐环的NTDA与二胺反应不仅形成酰亚胺结构,而且还形成异酰亚胺结构,并且酸性条件下更有利于酰亚胺结构的形成。这三种以苯乙炔苯酐封端的低聚物均具有良好的加工性能和热性能,有很宽的加工窗口,5%热失重温度均5300℃以上。萘环的引入使低聚物固化前后的玻璃化转变温度均有所提高,但也使得低聚物黏度上升。  相似文献   

8.
采用二胺单体FFDA与二酐单体6FDA在195℃下进行聚合反应,合成了一种含氟聚酰亚胺光波导材料.并通过核磁共振氢谱元素分析确定其分子结构,在此基础上对所得材料进行相应性能表征.表征结果显示,该材料具有良好的成膜性、光学透明性(95%以上)及热稳定性(玻璃化温度375℃),可以用于光波导器件的制作,是一种新型的光波导制作材料.  相似文献   

9.
为了提高感光聚酰亚胺的感光灵敏度,用均四甲苯和2,6二甲基苯胺为主要原料,合成了两种二胺:3,3′,5,5′四甲基4,4′二胺基二苯甲烷和2,3,5,6四甲基1,4苯二胺.用所制得的二胺与二酐合成了均聚型自感光聚酰亚胺,并对其感光性能、热性能、溶解性能等进行了测试.得到了一种感光性能优异、热性能和溶解性能优良的自感光聚酰亚胺.  相似文献   

10.
以降冰片烯二酸酐为原料,通过羰甲酯化反应,酯的水解,酸脱水最后生成双环[2.2.1]庚烷-2-endo,3-endo,5-exo,6-exo-四羧酸2,3:5,6-二酸酐(BHDA);将制得的酸酐作为二酐单体与4种二胺单体在溶剂中高温溶液缩聚生成4种聚酰亚胺(PI),并对它们的性能进行了测试分析.此类聚酰亚胺具有易溶于强极性有机溶剂(2种含氟元素的也可溶于普通有机溶剂),颜色较浅,较高的热分解温度,玻璃化温度低,易于加工等特性.  相似文献   

11.
以9,9-双(3-氟-4-氨基苯基)芴和4,4 (六氟异丙烯)二酞酸酐为单体合成含芴聚酰亚胺(FFDA-6FDA), 并采用Fourier变换红外光谱(FT-IR)、 核磁共振氢谱(1H NMR)对其结构进行表征. 实验结果表明: FFDA-6FDA的结构与预期结果相同, 单体间酰亚胺化反应完全; 室温下FFDA-6FDA在多种常规有机溶剂中溶解性良好; FFDA-6FDA具有较高的热稳定性能, 其玻璃化转变温度为370 ℃, 氮气中10%热失重温度为582 ℃, 800 ℃的热残留率大于61%; FFDA-6FDA薄膜具有较好的光学透明性, 截断波长为294 nm.  相似文献   

12.
使醋酸锰与α-萘乙酸(C10H7CH2COOH)、4,4′-联吡啶(4,4′-bipy)水热反应,合成了配位聚合物{[Mn(C10H7CH2COO)2(H2O)2(4,4′-bipy)]·4H2O]n.通过红外、元素分析以及晶体结构测试表征了所得到配合物的结构.单晶X射线测试表明,该配合物是由4,4′-bipy桥联多个金属锰(II)离子形成的一维{[Mn(4,4′-bipy)]。长链α-萘乙酸根离子的氧原子以单齿形式与中心金属离子配位,悬挂于长链的两侧,研究了这个配合物的荧光性能和热稳定性.  相似文献   

13.
对短瓣兰根的丙酮提取物进行化学成分研究.利用各种色谱技术进行分离纯化,根据理化性质、波谱特征鉴定结构.分离并鉴定了16个菲类化合物,分别为2,2′-dimethoxy-9,9′,10,10′-dihydro-[1,1′-biphenanthrene]-4,4′,7,7′-tetrol(1), flavanthrin(2),Blestriarene B(3),Blestriarene C(4),2,2′-dihydroxy-4,7,4′,7′-tetramethoxy-1,1′-biphenanthrene(5),2,7,2-trihydroxy-4,4,7-trimethoxy -1,1-biphenanthrene(6),lusianthridin(7),orchinol(8),coelonin(9),6-methoxycoelonin(10),dehydroorchinol(11),2-hydroxy-4,7-dimethoxyphenanthrene(12),2-methoxymoscatin(13),4,7-dihydroxy -1-(4-hydroxybenzyl) -2-methoxy-9,10-dihydrophenanthrene(14),2,7-dihydroxy-1,3-bi(p-hydroxybenzyl) -4-methoxy-9,10-dihydrophenanthrene(15),2,7-dihydroxy-1,6-bi(p-hydroxybenzyl) -4-methoxy-9,10-dihydrophenanthrene(16).化合物1~16均为首次从该植物中分离得到,并首次使用2D-NMR对化合物1的数据进行了准确归属.  相似文献   

14.
以4,4’-二氨基二苯硫醚(SDA)和联苯四酸酐(BPDA)为原料,通过溶液缩聚-热酰亚胺化/化学酰亚胺化的方法制备了一种新型的含硫醚结构联苯型聚酰亚胺。利用高级旋转流变仪在线跟踪反应进程,采用热失重分析仪研究反应条件对热酰亚胺化及化学酰亚胺化法的影响,为进一步制备高性能的聚酰亚胺建立有效的实验手段和方法。采用小角激光光散射法、红外光谱、元素分析、接触角仪、DSC等方法对聚合物的结构与性能进行表征。结果显示,硫醚结构的引入使聚合物的表面张力与铜箔相当,可有效改善聚合物薄膜的表面性能,其与铜箔之间的黏附功明显大于传统聚酰亚胺,在无胶挠性线路板应用方面显示出较好的应用前景。所获聚合物的绝对重均相对分子质量为(3.8±1.1)×104g/mol,分解温度均高于560℃;DSC的结果显示所制备的两种酰亚胺化聚合物均具有较高的玻璃化转变温度,相比之下,化学酰亚胺化更有利于获得高酰亚胺化程度的聚合物,产物的玻璃化转变温度也更高。  相似文献   

15.
碱溶性光敏有机硅预聚物的合成   总被引:1,自引:0,他引:1  
以环氧树脂AG-80、丙烯酸(AA)、羟烷基硅油、异佛尔酮二异氰酸酯(IPDI)和二羟甲基丙酸(DMPA)为原料,采用两步法合成了碱溶性光敏有机硅预聚物(APSUA)。研究了反应温度、加料方式、催化剂用量及IPDI滴加速度等因素对合成反应和产物性能影响,确定了最佳反应条件,并通过FT-IR、1H-NMR及GPC对预聚物结构进行了表征。结果表明,第一步合成四缩水甘油二氨基二苯甲烷四丙烯酸酯(TDDM)最佳反应温度为90℃,采用将AA滴加到AG-80中的加料方式,第二步合成APSUA的催化剂为二月桂酸二丁基酯(DBTDL),用量0.5%(质量分数),滴加速度为0.3mL/min;产物APSUA数均分子量7795,黏度5328mPa·S,具有良好的碱溶性。  相似文献   

16.
采用聚碳酸酯(PC)、聚醚酰亚胺(PEI)和聚对苯二甲酸丁二醇酯(PBT)3种热塑性塑料改性环氧树脂,研究了不同热塑性塑料对环氧树脂在低温(77 K)及室温下的冲击性能及热性能的影响。研究结果表明:相对于纯环氧树脂,PEI、PC和PBT改性环氧树脂在77 K时的冲击强度分别提高了50.7%、36.4%和30.7%,在室温下的冲击强度分别提高了58.5%、39.2%和28.9%;PEI、PC和PBT改性环氧树脂及纯环氧树脂在-150℃的储能模量分别为5025 MPa、4733 MPa、4539 MPa和3853 MPa;相对于纯环氧树脂,PEI、PC和PBT改性环氧树脂的起始热失重温度分别提高了14℃、10℃和7℃。表明热塑性塑料可提高环氧树脂的冲击性能和热稳定性。  相似文献   

17.
共缩聚型可溶性耐高温聚芳酰胺合成及表征   总被引:5,自引:0,他引:5  
采用1,2-二氢-2-(4-氨基苯基)-4-[4-(4-氨基苯氧基)-苯基]-二氮杂萘-1-酮(A)、4,4′-二氨基二苯醚(B)、4,4′-二氨基二苯甲烷(C)为共缩聚二胺单体与对苯二甲酸进行共缩聚反应,制备共缩聚型聚酰胺。当A与B或C的物质的量比为10:0-5:5时,所得聚酰胺溶于强极性溶剂,在NMP中的特性粘度为0.91-1.43dL/g。它们的玻璃化转变温度均高于300℃,具有优异的耐热性能,在氮气中5%的热失重温度为450℃左右,并且在研究范围内与共聚二胺的结构及比例无关。  相似文献   

18.
以3,3′ 二磺酸钠基 4,4′ 二氯二苯砜(SDCDPS)、 邻甲基对苯二酚、 4,4′ 二氯 二苯砜(DCDPS)为原料, 利用亲核缩聚反应, 通过调整磺化单体(SDCDPS)和非磺化单体(DCDPS)的比例与邻甲基对苯二酚共聚, 合成了一系列具有不同磺化度的磺化聚醚醚砜. 红外光谱证实所合成聚合物为目标产物. 发现邻甲基对苯二酚结构单元的存在, 使聚合物具有较高的离子交换容量, 从而使低磺化度的共聚物具有相对高的质子传导率. 该聚合物具有较高的分子量和良好的热稳定性和溶解性.  相似文献   

19.
以联苯二酚为原料经2步反应合成了8-[4′-丙氧基(1,1-联苯)-氧]-辛酸, 并对影响产率的因素进行了探讨;通过红外光谱和核磁共振谱表征了8-[4′-丙氧基(1,1-联苯)-氧]-辛酸的化学结构,并用差示扫描量热法和热台偏光显微镜表征了其热致液晶性质。结果表明,第1步合成4′-丙氧基-4-羟基联苯的适宜条件为: n(联苯二酚)∶ n(溴代正丙烷)∶ n(碱)=1∶1.2∶1,碘化钾用量为4.5%(以联苯二酚质量为基准),加热回流8h;第2步制得8-[4′-丙氧基(1,1-联苯)-氧]-辛酸的适宜条件为;n(碳酸钾)∶ n(8-溴辛酸乙酯)∶ n(4′-丙氧基-4-羟基联苯)=2∶1.5∶1,相转移剂四丁基溴化铵用量为10%(以4′-丙氧基-4-羟基联苯质量为基准),加热回流24h,将产物在甲醇中水解制得,产率40%, 纯度可达94.9%。  相似文献   

20.
合成了配位高分子{Zn3(Ac)4(4,4′-bpy)3\2}n,并用X射线衍射表征了其结构,结构包含一个独特的三腿梯子。晶体参数:单斜,空间群C2/c,a=21.603 4(13),b=11.456 6(7),c=17.798 2(12) ,β=104.245(4)°,V=4 269.6(5) 3,Z=4,Dc=1.607 Mg/m3,μ=1.741 cm-1,R1=0.050 6,wR2=0.087 7。Zn(Ⅱ)原子位于梯子扶手和横栏的交点,两侧的Zn(1)原子具有三角双锥配位环境位,中间的Zn(2)原子呈八面体配位环境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号