共查询到17条相似文献,搜索用时 56 毫秒
1.
同步电动机矢量控制动态解耦性和阻尼绕组作用 总被引:3,自引:0,他引:3
同步电动机矢量控制存在动态解耦性问题,以往未做深入的研究,实际应用中已暴露出基于稳态解耦的矢量控制的局限性。本研究从数学意义上进一步阐明同步电动机矢量控制的动态解耦性问题,并进行较为深入的理论分析和实验研究。同时对阻尼绕组与同步电动机动态解耦性的关系进行数学分析与说明。 相似文献
2.
采用非线性状态反馈和非线性坐标变换实现感应电动机的非线性解耦控制和线性化.通过对转子磁链的优化控制,提高了感应电动机的功率因数和效率,从而实现系统的节能控制. 相似文献
3.
利用人工神经网络进行感应电动机解耦控制 总被引:1,自引:0,他引:1
为了使感应电动机具有象直流电动机一样优良的转矩与转速控制性能,提出了一种基于人工神经网络的感应电动机解耦控制方法。由于实时递归网络具有较强地表达和处理瞬态信息的能力,适合解决非线性动态系统问题,因此用递归网络构成的解耦控制器具有良好的动态特性。为减少这种神经网络解耦控制器的学习时间,提出了一种自适应学习算法,通过在网络学习的过程中不断地调整学习速率,从而加快了网络学习速度。仿真计算结果表明,这种神经网络解耦控制方式具有优良的动态响应特性。 相似文献
4.
感应电动机解耦及转子电阻变化的影响 总被引:1,自引:3,他引:1
本文证明了感应电动机的解耦控制定理,分析了转子电阻变化对解耦控制系统的影响。指出:在电机磁路保持线性的条件下,欠解耦将导致电机负载能力下降,励磁电流在重载时减小;过解耦则有利于电机负载能力的提高,但在负载稍大时使励磁电流增加。在允许的范围内,增大解耦电阻对感应电动机解耦控制系统是有利的。 相似文献
5.
具有扰动补偿感应电动机滑动模解耦与控制 总被引:2,自引:0,他引:2
对感应电机提出了一种新颖滑动模控制方法:在内环采用具有扰动补偿的滑动模解耦,在外环采用PI控制器进行速度控制。将一种简单而新颖的方法艇于估算感应电机的扰动信号,仿真结果证实具有扰动补偿的新型滑动模控制系统具有更好的解耦性能、快速动态响应和更强的鲁棒性。 相似文献
6.
7.
给出了感应电动机的一种直接控制方法,按这种方法施加控制输入,可使感应电动机调速系统成为全解耦的常系数线性系统。 相似文献
8.
给出一种新的用于转子磁场直接定向矢量控制系统的解耦电压计算方法,通过计算机仿真分析和实验,对其转矩响应能力等控制性能进行研究并给出结论,仿真采用Matlab6.1软件. 相似文献
9.
提出了一种变速、恒转矩下使电动机的功率因数和效率最优的方法 ,该方法适用于非线性解耦控制的交流传动系统 .仿真结果表明 ,所提方法是正确的 相似文献
10.
针对异步电机微分几何法控制系统 ,分析电机参数变化对系统的动、静态性能的影响 ,提出一种简单的转子参数辨识算法 .给出了相关的结构图及仿真结果 相似文献
11.
主动磁悬浮轴承的解耦控制 总被引:12,自引:1,他引:12
运用解耦控制策略对六自由度刚性转子主动磁悬浮轴承(AMB)进行控制,应用基于逆系统理论的状态反馈线性化方法,设计出非线性控制器。将AMB这一多变量、强耦合及非线性的系统,分解为6个单变量无耦合的线性子系统,并对线性子系统进行了综合。仿真表明,此控制策略实现了各自由度之间的动态解耦,系统的动态性能较传统的PID控制方法有明显的提高。 相似文献
12.
13.
基于动态神经网络解耦线性化的内模控制 总被引:1,自引:0,他引:1
采用动态神经网络对一类多变量仿射非线性系统进行建模,利用解析求得的模型动态逆,将非线性对象近似输入输出解耦线性化。针对复合后的伪线性系统采用内模控制,分析了存在建模误差的情况下闭环系统的鲁棒稳定性。仿真表明了所提方法的有效性。 相似文献
14.
讨论了一类非线性控制系统的干扰解耦问题,通过对系统正则型的研究给出了使系统可通过静态反馈达到干扰解耦控制的充分必要条件,并给予了严格的证明。 相似文献
15.
本文建立了三自由度电机的电磁模型和力学模型,据此提出了三自由度电机的解耦控制理论.文中给出的仿真与实验结果表明,以上述理论为指导研制的三自由度电机伺服系统实现了无约束的三自由度运动. 相似文献
16.
李一鸣 《湖南理工学院学报:自然科学版》2014,(3):37-40
阐述了异步电动机磁场定向矢量控制技术的工作原理,给出了其数学模型和矢量控制方程.在此研究基础上,在MATLAB/Simulink中对异步电动机磁场定向矢量控制系统进行了建模与仿真.最后通过对转速和转矩以及三相定子电流仿真结果进行分析,表明异步电动机磁场定向矢量控制系统具有良好的动态和静态特性. 相似文献
17.
非线性奇异控制系统的干扰解耦问题 总被引:1,自引:0,他引:1
基于非线性系统的微分几何理论,讨论了非线性奇异系统的干扰解耦问题及其可解条件·建立了系统的向量相对阶与系统可实现干扰解耦的联系·给出了非线性奇异系统干扰解耦问题可解的充分条件·并指出了这个条件也是非线性系统对应结果的直接推广·这里给出的结论与方法可用于进一步研究此类系统的输出跟踪及反馈稳定化问题· 相似文献