共查询到16条相似文献,搜索用时 78 毫秒
1.
将Jacobi椭圆函数展开法进一步扩展,并利用这一方法求出组合KdV方程和mKdV方程的一系列新的显式精确解,在模数m→1或0的极限情况下,可得到相应的孤立波解和单周期波解.研究表明,该方法在寻求数学物理领域的非线性偏微分方程的精确解方面是有效的. 相似文献
2.
提出一种求解非线性微分方程椭圆函数解的方法,并通过此方法,求出了mKdV(modified Korteweg-de Vries)方程的多个椭圆函数解,涵盖了一些已知解,也包括新的无理式解及一些新的椭圆函数解,这些解在某些情况下可退化为孤子解和三角函数解。此方法还可用于求解其它非线性微分方程。 相似文献
3.
对包括阻尼KdV方程、柱KdV方程和球KdV方程在内的一类KdV方程进行求解,得到了这一类方程积分意义下的广义解析解.结果表明,波的振幅和速度都随时间的变化而减小.同时,该解具有一定的局域性质,可以解析地研究非平面状孤立波的传播.对所得解与数值解进行了比较,两者符合得很好. 相似文献
4.
利用截断展开法和延拓齐次平衡法同时求出了广义变系数KdV方程和广义变系数mKdV方程的精确钟状类孤子解 .其基本思想是 :设方程的解形式为u(x ,t) =∑nm=0υm(t)Fm, F =eα( ξ+ξ0 )1+eα( ξ+ξ0 )代入给定方程确定出n ,并令F的各次幂项的系数为零 ,得到超定可积分方程组 ,由此求出给定方程的精确类孤子解 . 相似文献
5.
通过Hermite变换把Wick-类型的广义随机KdV方程和广义随机mKdV方程变成普通的KdV方程,利用截断展开法和延拓齐次平衡法求出方程的解,然后通过Hermite的逆变换求出相应方程的随机钟状类孤子解. 相似文献
6.
基于新的辅助方程系统,提出了一种构造偏微分方程精确解的代数方法.选择 mKdV方程验证了算法的有效性,获得了丰富的新有理孤波解和周期解.该方法可用于获得其他的偏微分方程的精确解. 相似文献
7.
利用行波变换,对非线性色散KdV方程进行了研究,获得了该方程的各类精确解,并讨论了这些解的动力学性质.通过图像模拟,直观地展示了部分精确解的动力学行为和动力学现象. 相似文献
8.
对求解非线性数学物理方程的F-展开法作了一点扩展。并利用此方法求出了mKdV方程的一些用Jacobi椭圆函数表示的双周期波解,尤其是用两个不同Jacobi椭圆函数表示的周期波解。在极限情形。得到了该方程的孤立波解(如激波解)和三角函数表示的周期波解。 相似文献
9.
10.
蔡红颖 《浙江师范大学学报(自然科学版)》2000,23(3):257-259
使用齐次平衡方法,获得了耦合KdV方程的一个变换,经过这一变换,耦合KdV方程简化为著名的KdV方程形式,以致可以求出它们的单弧波解,多孤波解。 相似文献
11.
用新的辅助方程构造了KdV方程和K-P方程的新的精确孤立波解. 相似文献
12.
KdV方程的显示精确解 总被引:1,自引:5,他引:1
谢茂森 《四川师范大学学报(自然科学版)》2004,27(5):489-491
考虑非线性偏微分方程ut-6uux uxxx=0,运用齐次平衡法,通过假设和直接代数法相结合,求出了KdV方程的一些显示精确解.这些结果说明,所用方法可用来求解一类非线性偏微分方程. 相似文献
13.
朱燕娟 《中山大学学报(自然科学版)》1998,37(3):72-75
利用一种直接的代数方法,求出了组合KdV-mKdV-Burgers方程和Kolmogorov-Petrovski-Piskunov方程的几类行波解,其方法也可推广求解高维非线性演化方程. 相似文献
14.
借助于6阶KdV方程的分解式,运用最近提出的(G’/G)-展开法获得了6阶KdV方程的行波解,分别以含两个任意参数的双曲函数、三角函数及有理函数表示,并运用变换方程方法得到了该6阶KdV方程的多孤子解。结合解的图形对所获得的2-孤子解做了细致的分析,讨论了两个孤波的相互作用。 相似文献
15.
尖峰孤子解和紧孤子解是非线性方程的新型孤子解.利用相关文献提出的方法分别研究修正的KdV方程(mKdV)和修正的BBM方程(mBBM),得到3种形式的孤子解:尖峰孤子解、双峰孤子解和尖峰紧孤子解.通过数值模拟得到解的图像,其中之一为双峰形的孤立波.这些结果进一步丰富了这2个非线性波方程的精确解的形式和内容.该文提出的3个拟解之一还可以用于其他多个非线性波方程,如:Klein-Gordon方程、Ф4方程、Sine-Gordon方程和Landau-Ginzburg-Higgs方程. 相似文献
16.
两类变系数KdV方程的新精确孤波解 总被引:1,自引:0,他引:1
通过试探方法得到辅助常微分方程的一些新的孤波解.利用该方程及其解,采用改进的tanh函数展开法研究了第1类和第2类变系数KdV方程,获得了在一定条件下的若干新精确孤波解.该方法也适合求解其他变系数非线性偏微分方程的孤波解. 相似文献