首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A M Rose  T P Snutch 《Nature》1984,311(5985):485-486
The mobilization of Tc1, a transposable element in the genome of the roundworm Caenorhabditis elegans, has been investigated. Genomic blot hybridization has shown that Tc1 exists in very different numbers in the genomes of two closely related strains of C. elegans: there are approximately 30 copies of Tc1 in the Bristol strain, whereas in the Bergerac strain there are 200-300. Most of these Tc1 elements are structurally highly conserved although there exists a second form which contains a HindIII restriction site (Tc1 (Hin) form) and comprises approximately 10% of the population. Excision of Tc1 from its chromosomal location in the Bergerac strain is indicated by the presence, on genomic blots, of a minor band corresponding to the size of the uninserted restriction fragment. Here we describe the recovery of extrachromosomal linear and closed circular copies of Tc1 from the Bergerac strain, presumably a result of Tc1 excision.  相似文献   

2.
3.
M Collins  G M Rubin 《Nature》1983,303(5914):259-260
Precise excision of transposable elements in prokaryotes is a rare event which occurs at a significantly lower rate than transposition and other element-mediated events. Thus, we were intrigued by a eukaryotic transposable element which seemed capable of precise excision at high frequencies. The white-crimson (wc) mutation in Drosophila, a highly unstable allele of the X-linked eye colour locus, white, resulted from the insertion of a member of the foldback (FB) transposable element family. This mutation reverts to its parental phenotype at a frequency of greater than 1 in 10(3) X chromosomes. Characterization of these revertants by Southern blots of genomic DNA indicated that they resulted from loss of the wc insertion. Here we report the nucleotide sequence of the excision point in these revertants, and conclude that the FB element responsible for the wc mutation is capable of precise excision at high frequencies.  相似文献   

4.
It has been suggested that the middle repetitive class of sequences that make up a large proportion of the eukaryotic genome have been amplified and dispersed by DNA transposition. Transposition is a phenomenon first postulated by Barbara McClintock on the basis of her genetic analysis of mutants in Zea mays. Since then, DNA transposition has been studied genetically in various plant systems and is well documented on the molecular level in both prokaryotes and eukaryotes. This has included the isolation of DNA inserts at various loci in several plants; however, the prevalence of transposition in plants is not established. We report here DNA nucleotide sequence data which show that some members of the Cin1 middle repetitive family of maize have features characteristic of known transposable elements. One cloned Cin1 repeat has a 6-base pair (bp) perfect inverted repeat sequence at its ends. The terminal five base pairs (5' TGTTG . . . CAACA 3') are identical to the termini of Drosophila copia transposable elements. Two other Cin1 alleles are flanked by 5-bp direct repeats. A comparison is made with the long terminal repeat (LTR) of the copia-Ty1-retrovirus families of moveable genetic elements.  相似文献   

5.
Retroviral proviruses and the transposable elements of eukaryotic genomes are structurally similar. The biological significance of eukaryotic transposable elements has not been examined extensively but it is known that, like prokaryotic transposons, these elements can induce mutations in adjacent genes and cause their transposition. It is of interest to determine whether retroviral proviruses have the same mutagenic and gene transposing ability as transposable elements, particularly because the retrovirus genome is assumed to have originated from transposable elements of lower eukaryotes. The transfer of DNA sequences into animal zygotes or embryos by microinjection is a promising experimental approach for eluxidating their functions: when foreign DNAs were introduced into a mouse germ line, mutations were induced and at least in some mice, the mutation was caused by the insertion of a retroviral sequence. We have introduced Rous sarcoma virus (RSV) DNA into a germ line of Drosophila melanogaster, and describe here the resultant genetic effects.  相似文献   

6.
Transposons have been enormously useful for genetic analysis in both Drosophila and bacteria. Mutagenic insertions constitute molecular tags that are used to rapidly clone the mutated gene. Such techniques would be especially advantageous in the nematode Caenorhabditis elegans, as the entire sequence of the genome has been determined. Several different types of endogenous transposons are present in C. elegans, and these can be mobilized in mutator strains (reviewed in ref. 1). Unfortunately, use of these native transposons for regulated transposition in C. elegans is limited. First, all strains contain multiple copies of these transposons and thus new insertions do not provide unique tags. Second, mutator strains tend to activate the transposition of several classes of transposons, so that the type of transposon associated with a particular mutation is not known. Here we demonstrate that the Drosophila mariner element Mos1 can be mobilized in C. elegans. First, efficient mobilization of Mos1 is possible in somatic cells. Second, heritable insertions of the transposon can be generated in the germ line. Third, genes that have been mutated by insertion can be rapidly identified using inverse polymerase chain reaction. Fourth, these insertions can subsequently be remobilized to generate deletion and frameshift mutations by imperfect excision.  相似文献   

7.
W Chia  S McGill  R Karp  D Gubb  M Ashburner 《Nature》1985,316(6023):81-83
The TE1 family of transposable elements (TEs) of Drosophila consists of unusually large transposons, cytologically visible in larval polytene chromosomes as one or more bands. They are composite elements, as their termini consist of foldback (FB) sequences which are themselves transposable. The location of FB elements at the termini of transposable elements suggests that these sequences have a direct role in the genetic instability of TEs. To investigate the structural and phenotypic consequence of TE excision, we have cloned genomic DNA required for the expression of the no-ocelli (noc) gene of Drosophila; this gene has been mutated by the insertion of TE146, a member of the TE1 family carrying six polytene chromosome bands including functional copies of the white (w+) and roughest (rst+) genes. As reported here, our experiments indicate that the spontaneous excision of TE146, which results in the loss of the w+ and rst+ markers, can occur either as a single-step event or following a partial internal deletion. In either case, the end product is an imprecise excision in which a residual portion of the element, varying in size from 3 to 10 kilobases (kb), is left at the insertion site. These residual sequences share homology with the FB family. Furthermore, despite their imprecise nature, all these spontaneous excisions restore a wild-type noc+ phenotype.  相似文献   

8.
9.
DNA sequence at the end of IS1 required for transposition   总被引:2,自引:0,他引:2  
P Gamas  D Galas  M Chandler 《Nature》1985,317(6036):458-460
The insertion sequence IS1 belongs to a class of bacterial transposable genetic elements that can form compound transposons in which two copies of IS1 flank an otherwise non-transposable segment of DNA. IS1 differs from other known elements of this class (such as IS10, IS50 and IS903) in several respects. It is one of the smallest known insertion elements, exhibits a relatively complex array of open reading frames, is present in the chromosomes of various Enterobacteria, in some cases in many copies, and its insertion can result in the duplication of either 8 or 9 base pairs (bp) in the target DNA. Furthermore, although, like other members of the compound class, it seems to undergo direct transposition, IS1 also promotes replicon fusion (co-integrate formation) at a relatively high frequency. Like all other elements studied to date, the integrity of the extremities of IS1 are essential for efficient transposition. We have constructed a test system to determine the minimal DNA sequences at the extremities of IS1 required for transposition. Sequential deletions of the end sequences reveal that 21-25 bp of an isolated extremity are sufficient for transposition. A specific sequence 13-23 bp from the ends, defining the edge of the minimal sequence, is implicated as an essential site. The sites, symmetrically arrayed at both ends of IS1, correspond to the apparent consensus sequence of the known binding sites for the Escherichia coli DNA-binding protein (called integration host factor or IHF) which is required for the site-specific recombination that leads to integration of bacteriophage lambda into the bacterial genome. The sites at the ends of IS1 may thus bind a host protein, such as JHF or a related protein, that is involved in regulating the transposition apparatus.  相似文献   

10.
11.
Transposons have provided important genetic tools for functional genomic screens in lower eukaryotes but have proven less useful in higher eukaryotes because of their low transposition frequency. Here we show that Sleeping Beauty (SB), a member of the Tc1/mariner class of transposons, can be mobilized in mouse somatic cells at frequencies high enough to induce embryonic death and cancer in wild-type mice. Tumours are aggressive, with some animals developing two or even three different types of cancer within a few months of birth. The tumours result from SB insertional mutagenesis of cancer genes, thus facilitating the identification of genes and pathways that induce disease. SB transposition can easily be controlled to mutagenize any target tissue and can therefore, in principle, be used to induce many of the cancers affecting humans, including those for which little is known about the aetiology. The uses of SB are also not restricted to the mouse and could potentially be used for forward genetic screens in any higher eukaryote in which transgenesis is possible.  相似文献   

12.
A copia-like transposable element family in Arabidopsis thaliana   总被引:32,自引:0,他引:32  
D F Voytas  F M Ausubel 《Nature》1988,336(6196):242-244
The fast generation time, small genome size and extensive genetic map of the crucifer Arabidopsis thaliana have made it the subject of an increasing number of studies in plant molecular genetics. As transposable elements have greatly facilitated genetic analysis in a variety of species, we have attempted to identify an endogenous A. thaliana transposable element. We report here the discovery of a family of such elements, which we refer to as Ta1 elements. Sequence analysis of one such element shows that it is closely related to retrotransposons and integrated retroviral proviruses, being bound by a direct sequence repeat and having an open reading frame with clear sequence similarity to the polyprotein of the Drosophila melanogaster retrotransposon copia. The sequence of an empty target site of a Ta1 element shows that insertion is accompanied by a five-base-pair target-site duplication and that Ta1 has transposed in the period of time since divergence of two races of A. thaliana.  相似文献   

13.
DeRenzo C  Reese KJ  Seydoux G 《Nature》2003,424(6949):685-689
In many animals, establishment of the germ line depends on segregation of a specialized cytoplasm, or 'germ plasm', to a small number of germline precursor cells during early embryogenesis. Germ plasm asymmetry involves targeting of RNAs and proteins to a specific region of the oocyte and/or embryo. Here we demonstrate that germ plasm asymmetry also depends on degradation of germline proteins in non-germline (somatic) cells. We show that five CCCH finger proteins, components of the Caenorhabditis elegans germ plasm, are targeted for degradation by the novel CCCH-finger-binding protein ZIF-1. ZIF-1 is a SOCS-box protein that interacts with the E3 ubiquitin ligase subunit elongin C. Elongin C, the cullin CUL-2, the ring finger protein RBX-1 and the E2 ubiquitin conjugation enzyme UBC5 (also known as LET-70) are all required in vivo for CCCH finger protein degradation. Degradation is activated in somatic cells by the redundant CCCH finger proteins MEX-5 and MEX-6, which are counteracted in the germ line by the PAR-1 kinase. We propose that segregation of the germ plasm involves both stabilization of germline proteins in the germ line and cullin-dependent degradation in the soma.  相似文献   

14.
The plant MITE mPing is mobilized in anther culture   总被引:13,自引:0,他引:13  
Kikuchi K  Terauchi K  Wada M  Hirano HY 《Nature》2003,421(6919):167-170
Transposable elements constitute a large portion of eukaryotic genomes and contribute to their evolution and diversification. Miniature inverted-repeat transposable elements (MITEs) constitute one of the main groups of transposable elements and are distributed ubiquitously in the genomes of plants and animals such as maize, rice, Arabidopsis, human, insect and nematode. Because active MITEs have not been identified, the transposition mechanism of MITEs and their accumulation in eukaryotic genomes remain poorly understood. Here we describe a new class of MITE, called miniature Ping (mPing), in the genome of Oryza sativa (rice). mPing elements are activated in cells derived from anther culture, where they are excised efficiently from original sites and reinserted into new loci. An mPing-associated Ping element, which has a putative PIF family transposase, is implicated in the recent proliferation of this MITE family in a subspecies of rice.  相似文献   

15.
J F Brookfield  E Montgomery  C H Langley 《Nature》1984,310(5975):330-332
P elements are transposable elements found in P strain, but usually not in M strain, Drosophila melanogaster, and are responsible for the hybrid dysgenesis that occurs when male D. melanogaster of the P strain mate with females of the M strain (ref. 1 and references therein). Several P elements, which vary in length and genetic effects, have now been cloned. To investigate the evolutionary origin of P elements, we have used a cloned copy of a D. melanogaster P element to look for related sequences in the genomes of six other Drosophila species. We report here that, unlike many other transposable elements found in D. melanogaster, which seem also to be present in other Drosophila species, we have found no sequences closely enough related to P elements to be detected by DNA hybridization in any other Drosophila species. This result supports the hypothesis that P elements have recently invaded D. melanogaster by horizontal transmission.  相似文献   

16.
Epigenetic information is frequently erased near the start of each new generation. In some cases, however, epigenetic information can be transmitted from parent to progeny (multigenerational epigenetic inheritance). A particularly notable example of this type of epigenetic inheritance is double-stranded RNA-mediated gene silencing in Caenorhabditis elegans. This RNA-mediated interference (RNAi) can be inherited for more than five generations. To understand this process, here we conduct a genetic screen for nematodes defective in transmitting RNAi silencing signals to future generations. This screen identified the heritable RNAi defective 1 (hrde-1) gene. hrde-1 encodes an Argonaute protein that associates with small interfering RNAs in the germ cells of progeny of animals exposed to double-stranded RNA. In the nuclei of these germ cells, HRDE-1 engages the nuclear RNAi defective pathway to direct the trimethylation of histone H3 at Lys?9 (H3K9me3) at RNAi-targeted genomic loci and promote RNAi inheritance. Under normal growth conditions, HRDE-1 associates with endogenously expressed short interfering RNAs, which direct nuclear gene silencing in germ cells. In hrde-1- or nuclear RNAi-deficient animals, germline silencing is lost over generational time. Concurrently, these animals exhibit steadily worsening defects in gamete formation and function that ultimately lead to sterility. These results establish that the Argonaute protein HRDE-1 directs gene-silencing events in germ-cell nuclei that drive multigenerational RNAi inheritance and promote immortality of the germ-cell lineage. We propose that C. elegans use the RNAi inheritance machinery to transmit epigenetic information, accrued by past generations, into future generations to regulate important biological processes.  相似文献   

17.
18.
植物的转座元件对于植物基因组的组成、进化和基因表达都具有重要影响.植物绝大部分的转座元件都处于沉默状态.植物机体通过一套识别转座元件并进行表观遗传沉默的有效机制,可逆地调控着转座元件的激活与沉默.本文综述了转座元件沉默和激活的表观遗传机制.  相似文献   

19.
Wagner CR  Kuervers L  Baillie DL  Yanowitz JL 《Nature》2010,467(7317):839-843
Meiotic crossover (CO) recombination establishes physical linkages between homologous chromosomes that are required for their proper segregation into developing gametes, and promotes genetic diversity by shuffling genetic material between parental chromosomes. COs require the formation of double strand breaks (DSBs) to create the substrate for strand exchange. DSBs occur in small intervals called hotspots and significant variation in hotspot usage exists between and among individuals. This variation is thought to reflect differences in sequence identity and chromatin structure, DNA topology and/ or chromosome domain organization. Chromosomes show different frequencies of nondisjunction (NDJ), reflecting inherent differences in meiotic crossover control, yet the underlying basis of these differences remains elusive. Here we show that a novel chromatin factor, X non-disjunction factor 1 (xnd-1), is responsible for the global distribution of COs in C. elegans. xnd-1 is also required for formation of double-strand breaks (DSBs) on the X, but surprisingly XND-1 protein is autosomally enriched. We show that xnd-1 functions independently of genes required for X chromosome-specific gene silencing, revealing a novel pathway that distinguishes the X from autosomes in the germ line, and further show that xnd-1 exerts its effects on COs, at least in part, by modulating levels of H2A lysine 5 acetylation.  相似文献   

20.
Ahmed S  Hodgkin J 《Nature》2000,403(6766):159-164
The germ line is an immortal cell lineage that is passed indefinitely from one generation to the next. To identify the genes that are required for germline immortality, we isolated Caenorhabditis elegans mutants with mortal germ lines--worms that can reproduce for several healthy generations but eventually become sterile. One of these mortal germline (mrt) mutants, mrt-2, exhibits progressive telomere shortening and accumulates end-to-end chromosome fusions in later generations, indicating that the MRT-2 protein is required for telomere replication. In addition, the germ line of mrt-2 is hypersensitive to X-rays and to transposon activity. Therefore, mrt-2 has defects in responding both to damaged DNA and to normal double-strand breaks present at telomeres. mrt-2 encodes a homologue of a checkpoint gene that is required to sense DNA damage in yeast. These results indicate that telomeres may be identified as a type of DNA damage and then repaired by the telomere-replication enzyme telomerase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号