首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
粒子群优化算法(PSO)在众多的优化问题上表现出良好的性能,广泛应用于很多领域,但极易陷入局部最优解的困局.本文从提高收敛速度方面对PSO算法改进进行了研究,并通过仿真实验证明改进算法的可行性,一定程度上克服了PSO算法易于陷入局部最优解的缺点.  相似文献   

2.
粒子群优化算法(PSO)在众多的优化问题上表现出良好的性能,广泛应用于很多领域,但极易陷入局部最优解的困局.本文从提高收敛速度方面对PSO算法改进进行了研究,并通过仿真实验证明改进算法的可行性,一定程度上克服了PSO算法易于陷入局部最优解的缺点.  相似文献   

3.
近年来,一种新的基于种群优化的算法———粒子种群优化(PSO)算法,正受到人们的普遍关注。首先介绍了PSO原理及具体实现步骤,接着对各种常见PSO算法,例如原始算法、惯性权值算法、限制因子算法等进行了解释。在此基础上,对PSO算法典型模型的参数选择,如惯性权值、加权系数、最大速度等,进行了详细研究,并给出了实验结果,得出了相关结论,为今后参数的选择提供了参考。接着讨论了PSO在神经网络、模糊逻辑系统和进化计算等计算智能领域及其它工程领域的应用,最后给出了进一步的研究方向。  相似文献   

4.
基于粒子群统计规律的PSO算法   总被引:4,自引:0,他引:4  
粒子群优化(particle swarm optimization,PSO)算法是一类基于群体智能的全局优化算法,以其计算迅速和易于实现而得到广泛的应用.但作为一种进化算法,它在很多问题中却容易过早收敛,陷入早熟.这与粒子群采用单一的进化策略有关,因为过于单一的进化策略使粒子群整体上有一种趋同性.针对标准PSO算法的这个问题提出了一种改进方法,改进后的PSO-σ算法实质上是Kennedy讨论过的认知模型、社会模型和完全模型的混合算法.从算法的收敛性、准确性和稳定性等方面对这种改进的算法作了试验和分析,发现均优于标准PSO算法.  相似文献   

5.
小波阈值去噪算法的关键在于选取适当的阈值,尽管Donoho给出了理论上的最优通用阈值,但对于实际中变化繁多的各种信号,一个通用的阈值显然不能适用所有的情况。采用PSO优化技术,不需要知道太多信号的信息就可以搜索出最优的阈值去噪,并且这种方法不依赖于含噪信号本身,是一种通用的机制。问题的关键在于优化函数的构造。  相似文献   

6.
粒子群优化算法(Particle Swam Optimization,PSO)是一种高效,动态的优化算法,该算法比较容易实现,也无需调整太多的参数;然而算法后期收敛速度慢,最主要的是易陷入局部板值,为了改善这些缺点,学者们纷纷提出了许多改进的算法,并将其已经应用于科学和工程等多个领域。该文主要是在基本PSO的基础上进行改进,提出了一种新的改进算法-LPSO。最后通过仿真实验证实,改进后的算法在收敛速度和收敛精度上都得到了很大提高。  相似文献   

7.
基于标准PSO算法,通过分析惯性权值和学习因子2类参数不同的取值策略对常用测试函数优化结果的影响,来探究2类参数对算法性能的影响.实验结果表明,2类参数恰当的动态改变不仅能明显提高单峰函数的寻优精度和收敛速度,而且能提高双峰和多峰函数的寻优概率;惯性权值主要影响算法的收敛速度,随着惯性权值的递增,算法收敛速度逐渐加快;学习因子主要影响算法的寻优精度,当反映粒子的自我学习能力和向群体最优粒子学习的能力的学习因子同增同减变化时,寻优精度提高;惯性权值递增结合2种学习因子的同增同减变化,或惯性权值递减结合2种学习因子的一增一减变化,均可使标准PSO算法性能得到显著提高.  相似文献   

8.
提出了一种改进的混沌粒子群优化混合算法.该算法利用信息交换机制将两组种群分别用差分进化算法和粒子群算法进行协同进化,并且将混沌变异操作引入其中,加强算法的局部搜索能力.通过对3个标准函数进行测试,仿真结果表明该算法与差分进化粒子群优化(DEPSO)算法相比,全局搜索能力和抗早熟收敛性能大大提高.  相似文献   

9.
任肖琳 《科技信息》2010,(2):116-117
本文基于合理的信息共享机制,提出了一种改进的粒子群算法。该算法一方面,将粒子群算法中粒子行为基于个体最优位置和种群最优位置变化为基于个体最优位置、种群最优位置和其余粒子的个体最优位置。另一方面,粒子根据适应值的大小来决定其余粒子个体最优信息的利用程度。因此,每个粒子利用了更多其它粒子的有用信息,加强了粒子之间的合作与竞争。3个基准测试函数的仿真试验表明了改进算法的有效性。  相似文献   

10.
当前对于粒子群优化算法(简称基本PSO)的改进主要从控制参数与数学模型入手,但这可能导致会陷入局部最小值。针对这个问题,本文提出一种基于频域滤波模型的PSO算法(简称FPSO)。FPSO是对粒子种群多样性进行定量分析,当粒子集中度低于设定阈值时,以当前最优粒子为中心,在一定半径范围内进行傅里叶变换,通过预设的低通滤波器,削弱当前找到的最优值;然后对当前粒子群施加以最优粒子为势能中心的辐射力,所有粒子在滤波范围外部的空间以较大的速度继续搜索。结果分析表明:基于频域滤波模型的PSO算法提升了种群多样性,有效的提高了全局搜索能力,在求解多峰函数问题的解的精度上优于带电PSO算法与变异PSO算法。  相似文献   

11.
一种改进的粒子群优化算法   总被引:2,自引:1,他引:2       下载免费PDF全文
提出了一种改进的PSO(粒子群优化)算法,该算法在基本PSO算法的粒子位置更新公式中增加了一个积分控制项,积分控制项根据每个粒子的适应值决定粒子位置的变化,改善了PSO算法摆脱局部极小点的能力。另外,在该算法中粒子行为是基于个体极值中心点和全局极值点确定的,这使得粒子能够获得更多的信息量来调整自身状态。用3个基准函数对新算法进行了实验,结果表明新算法优于已有的一些改进PSO算法。  相似文献   

12.
将差异演化(DE)算法和标准PSO算法混合进行进化,把DE算法的优势带入到粒子群算法中,利用DE算法其本身具备的对粒子个体的交叉和变异操作使PSO算法种群保持寻优所需的多样性.文中将这种算法成功应用到神经网络的优化中,从而保证粒子速度能获得较大程度的更新保持较好的搜索能力,避免陷入"早熟"或"停滞"的能力大大提高.  相似文献   

13.
在进化过程中,可能会出现过早收敛现象,这主要是因为种群中出现了超级个体,按照一定的选择策略,该个体很快会在种群中占据绝对优势,从而使算法过早的收敛于一个局部的最优解,现在解决的方法有对超级个体的适应函数进行调整,从而控制该个体的选择概率,或增加个体的变异率来增加种群的多样性。同时,选择策略对算法性能的影响起到举足轻重作用。  相似文献   

14.
目的提出了一种基于混沌映射的粒子群优化算法。方法一方面,应用逻辑自映射函数初始化均匀分布的粒群以提高初始解的质量;另一方面,根据群体早熟收敛的判断机制,在算法进化过程中引入局部变异机制和局部重新初始化粒群的方法以有效避免算法陷入局部收敛的缺点。结果该算法应用在基准测试函数优化中能有效提高全局寻优的性能,且稳定性好;应用在图像分割中取得了与遗传算法同样好的分割效果。结论提出的算法具有有效性和实用性,可用于求解高维复杂函数以及工程优化问题。  相似文献   

15.
为在寻优过程中有效地保持算法的种群多样性,提出了一种改进的PSO(Particle Swarm Optimization) 算法--PSOPC(Particle Swarm Optimizer based on Predator-prey Coevolution)。PSOPC算法将生态系统中捕食者和猎物的竞争协同进化机制嵌入到PSO算法中。基于PSOPC进行RFID(Radio Frequency IDentification)读写器网络调度模型的求解,根据读写器冲突关系的变化在线进行读写器的时隙分配求解与控制,在不影响读写器工作效率的同时,有效消除密集读写器环境下的读写器冲突问题,并优化整个读写器网络的工作效率。  相似文献   

16.
分组PSO算法将粒子群分成几个小群,每个小群有不同的进化参数且每个小群分别进化,在间隔一定时刻进行组间变异和重组操作,并且在重组的同时对各小组参数进行粒子群优化,相比普通粒子群算法无论在收敛速度还是在精度和操作方便性上都有提高.  相似文献   

17.
水库优化调度实质上是一个非线性的不等式约束优化问题,在现行的求解方法中,对计算精度和复杂约束处理这两个问题一直考虑不足,相关方面的研究也较少.将粒子群算法和差分进化算法引入到水资源系统工程中,建立了水库调度的DE—PSO优化模型,避免了寻优瓶颈;针对复杂约束问题,提出退火罚函数法,有效地解决了水库调度问题.通过实例分析,验证了所给方法的可靠性.  相似文献   

18.
基于佳点集构造的改进量子粒子群优化算法   总被引:1,自引:0,他引:1  
针对粒子群优化算法易出现早熟收敛及局部搜索能力不足的特点,提出一种改进的量子粒子群优化算法(IQPSO).该算法在量子粒子群优化算法(QPSO)的基础上,引入佳点集初始化量子的初始角位置,提高初始种群的遍历性;在粒子角速度位置更新中,采用混沌时间序列数,促使粒子跳出局部极值点;为避免粒子陷入早熟收敛,在算法中加入变异处理.仿真实验结果表明:与标准粒子群优化(SPSO)算法和量子粒子群优化(QPSO)算法比较,提出的算法具有快速的收敛能力、良好的稳定性,其优化性能有较明显的提高.  相似文献   

19.
一种基于免疫选择的粒子群优化算法   总被引:2,自引:0,他引:2  
粒子群算法是一种新的群体智能算法,被广泛用于各种复杂优化问题的求解,但算法存在着过早收敛问题.为了克服算法早熟的缺点,将粒子群看作是一个复杂的免疫系统,借鉴生物学中免疫系统自我调节的机制,提出了一种新的基于免疫选择的粒子群优化算法(IS-PSO).免疫系统中的抗原、抗体和亲和度分别对应了待优化函数的最优解、候选解和适应度.IS-PSO通过免疫算法中免疫记忆、疫苗接种、免疫选择等操作有效地调节PSO算法中种群的多样性.给出了算法的详细步骤,并将本文提出的算法与基本的粒子群算法(bPSO)在几个典型Benchmark函数的优化问题应用中进行了比较,仿真结果表明:IS-PSO算法可以有效避免早熟问题,提高粒子群算法求解复杂函数的全局优化性能.  相似文献   

20.
粒子群算法(PSO)作为群智能算法的主要方法之一。自提出开始,便引起了众多研究学者的关注。PSO算法属于进化算法的一种,通过追随当前搜索到的最优值来寻找全局最优。在查阅大量文献的基础上,本文首先简单介绍了群智能的概念,简述了粒子群算法的基本原理。然后,详细叙述了PSO算法在电力网络规划,经济调度等电力系统领域中的应用,并回顾了前人及当前的研究成果。最后,指出了PSO算法未来的发展方向和研究重点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号