首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uptake of Pneumocystis carinii mediated by the macrophage mannose receptor   总被引:36,自引:0,他引:36  
Human exposure to Pneumocystis carinii is common but, in the absence of acquired or genetic dysfunction of either cellular or humoral immunity, exposure rarely leads to illness. Although alveolar macrophages can degrade P. carinii, macrophage receptors involved in P. carinii recognition have not been clearly defined. Characterization of a predominant surface glycoprotein of the high mannose type led us to investigate the role of the macrophage mannose receptor in this process. We report here that binding and uptake of cultured rat P. carinii by human and rat alveolar macrophages is reduced by 90% in the presence of competitive inhibitors of mannose receptor activity and by adherence of alveolar macrophages to mannan-coated surfaces. Further, only those COS cells transfected with the human macrophage mannose receptor complementary DNA that express surface mannose receptors bind and ingest P. carinii. These studies establish that the macrophage mannose receptor is sufficient for uptake of P. carinii and emphasize the role of the alveolar macrophage in first-line host defence against P. carinii.  相似文献   

2.
目的探讨脂多糖(LPS)对RAW264.7细胞白细胞介素10(interleuldn-10,IL-10)分泌及mRNA表达的影响。方法采用体外培养巨噬细胞株RAW264.7细胞,实验分为正常对照组、LPS组。采用ELISA法、逆转录PCR(RT—PCR)技术检测IIJ-10分泌及mRNA表达的变化。结果LPS刺激RAW264.7细胞后IL-10的分泌及mRNA表达较对照组增加(P〈0.05),并具有时间依赖性。结论LPS可刺激RAW264.7细胞IIJ—10分泌及mRNA表达的增加。  相似文献   

3.
目的探讨抗炎素-1(Antiflammin-1,AF-1)对脂多糖(LPS)诱导的RAW264.7细胞白细胞介素10(interleuki-10,IL-10)表达的影响。方法采用体外培养巨噬细胞RAW264.7细胞,实验分为正常对照组,LPS组和不同浓度的LPS+AF-1组。应用逆转录PCR(RT—PCR)技术检测IL-10表达的变化。结果1μg/ml的LPS刺激RAW264.7细胞后IL-10的表达较正常对照组增加(P〈0.05),LPS+AF-1组IL-10表达较LPS组表达显著升高(P〈0.05),并具有剂量依赖性结论AF-1可促进LPS诱导的RAW264.7细胞IL-10表达的增加。  相似文献   

4.
L Rohrer  M Freeman  T Kodama  M Penman  M Krieger 《Nature》1990,343(6258):570-572
The macrophage scavenger receptor, which has been implicated in the pathogenesis of atherosclerosis, has an unusually broad binding specificity. Ligands include modified low-density lipoprotein and some polyanions (for example, poly(I) but not poly(C]. The scavenger receptor type I (ref. 3) has three principal extracellular domains that could participate in ligand binding: two fibrous coiled-coil domains (alpha-helical coiled-coil domain IV and collagen-like domain V), and the 110-amino-acid cysteine-rich C-terminal domain VI. We have cloned complementary DNAs encoding a second scavenger receptor which we have termed type II. This receptor is identical to the type I receptor, except that the cysteine-rich domain is replaced by a six-residue C terminus. Despite this truncation, the type II receptor mediates endocytosis of chemically modified low-density lipoprotein with high affinity and specificity, similar to that of the type I receptor. Therefore one or both of the extracellular fibrous domains are responsible for the unusual ligand-binding specificity of the receptor.  相似文献   

5.
T Roger  J David  M P Glauser  T Calandra 《Nature》2001,414(6866):920-924
  相似文献   

6.
Benton R  Vannice KS  Vosshall LB 《Nature》2007,450(7167):289-293
The CD36 family of transmembrane receptors is present across metazoans and has been implicated biochemically in lipid binding and transport. Several CD36 proteins function in the immune system as scavenger receptors for bacterial pathogens and seem to act as cofactors for Toll-like receptors by facilitating recognition of bacterially derived lipids. Here we show that a Drosophila melanogaster CD36 homologue, Sensory neuron membrane protein (SNMP), is expressed in a population of olfactory sensory neurons (OSNs) implicated in pheromone detection. SNMP is essential for the electrophysiological responses of OSNs expressing the receptor OR67d to (Z)-11-octadecenyl acetate (cis-vaccenyl acetate, cVA), a volatile male-specific fatty-acid-derived pheromone that regulates sexual and social aggregation behaviours. SNMP is also required for the activation of the moth pheromone receptor HR13 by its lipid-derived pheromone ligand (Z)-11-hexadecenal, but is dispensable for the responses of the conventional odorant receptor OR22a to its short hydrocarbon fruit ester ligands. Finally, we show that SNMP is required for responses of OR67d to cVA when ectopically expressed in OSNs not normally activated by pheromones. Because mammalian CD36 binds fatty acids, we suggest that SNMP acts in concert with odorant receptors to capture pheromone molecules on the surface of olfactory dendrites. Our work identifies an unanticipated cofactor for odorant receptors that is likely to have a widespread role in insect pheromone detection. Moreover, these results define a unifying model for CD36 function, coupling recognition of lipid-based extracellular ligands to signalling receptors in both pheromonal communication and pathogen recognition through the innate immune system.  相似文献   

7.
Hoebe K  Du X  Georgel P  Janssen E  Tabeta K  Kim SO  Goode J  Lin P  Mann N  Mudd S  Crozat K  Sovath S  Han J  Beutler B 《Nature》2003,424(6950):743-748
In humans, ten Toll-like receptor (TLR) paralogues sense molecular components of microbes, initiating the production of cytokine mediators that create the inflammatory response. Using N-ethyl-N-nitrosourea, we induced a germline mutation called Lps2, which abolishes cytokine responses to double-stranded RNA and severely impairs responses to the endotoxin lipopolysaccharide (LPS), indicating that TLR3 and TLR4 might share a specific, proximal transducer. Here we identify the Lps2 mutation: a distal frameshift error in a Toll/interleukin-1 receptor/resistance (TIR) adaptor protein known as Trif or Ticam-1. Trif(Lps2) homozygotes are markedly resistant to the toxic effects of LPS, and are hypersusceptible to mouse cytomegalovirus, failing to produce type I interferons when infected. Compound homozygosity for mutations at Trif and MyD88 (a cytoplasmic TIR-domain-containing adaptor protein) loci ablates all responses to LPS, indicating that only two signalling pathways emanate from the LPS receptor. However, a Trif-independent cell population is detectable when Trif(Lps2) mutant macrophages are stimulated with LPS. This reveals that an alternative MyD88-dependent 'adaptor X' pathway is present in some, but not all, macrophages, and implies afferent immune specialization.  相似文献   

8.
In mammals, several well-defined metabolic changes occur during infection, many of which are attributable to products of the reticuloendothelial system. Among these changes, a hypertriglyceridaemic state is frequently evident, resulting from defective triglyceride clearance, caused by systemic suppression of the enzyme lipoprotein lipase (LPL). We have found previously that macrophages secrete the hormone cachectin, which specifically suppresses LPL activity in cultured adipocytes (3T3-L1 cells). When originally purified from RAW 264.7 (mouse macrophage) cells, cachectin was shown to have a pI of 4.7, a subunit size of relative molecular mass (Mr) 17,000 and to form non-covalent multimers. A receptor for cachectin was identified on non-tumorigenic cultured cells and on normal mouse liver membranes. A new high-yield purification technique has enabled us to determine further details of the structure of mouse cachectin. We now report that a high degree of homology exists between the N-terminal sequence of mouse cachectin and the N-terminal sequence recently determined for human tumour necrosis factor (TNF). Purified cachectin also possesses potent TNF activity in vitro. These findings suggest that the 'cachectin' and 'TNF' activities of murine macrophage conditioned medium are attributable to a single protein, which modulates the metabolic activities of normal as well as neoplastic cells through interaction with specific high-affinity receptors.  相似文献   

9.
D R Phillips  K Arnold  T L Innerarity 《Nature》1985,316(6030):746-748
Macrophages possess a receptor that binds low-density lipoproteins (LDL) containing lysine residues modified by acetylation (Ac LDL), acetoacetylation (AcAc LDL) or malondialdehyde treatment. This receptor (referred to as the Ac LDL receptor or scavenger receptor) internalizes the bound lipoprotein. As a consequence, massive amounts of cholesteryl esters accumulate so that macrophages in culture resemble foam cells found in atherosclerotic lesions. In an effort to identify an unmodified mammalian macromolecule that binds to the Ac LDL receptor, we investigated whether platelet secretory products affect the receptor-mediated endocytosis of chemically modified lipoproteins. Platelets are a potential source of such activity because they exist in close association with foam cells in developing atherosclerotic lesions. Our study demonstrates that human blood platelets secrete a product that inhibits the binding and uptake of AcAc LDL by mouse peritoneal macrophages and the subsequent accumulation of cholesteryl esters. This is the first indication that an endogenous macromolecule interacts with Ac LDL receptor on macrophages.  相似文献   

10.
Role for mouse macrophage IgG Fc receptor as ligand-dependent ion channel   总被引:1,自引:0,他引:1  
J D Young  J C Unkeless  T M Young  A Mauro  Z A Cohn 《Nature》1983,306(5939):186-189
The interaction of ligands with the mouse macrophage Fc receptor which binds IgG2b and IgG1 immune complexes (FcR gamma 2b/gamma 1) triggers phagocytosis and secretion of various mediators of inflammation. FcR gamma 2b/gamma 1 has been purified using a monoclonal anti-FcR antibody, 2.4G2, and seems to be an integral membrane glycoprotein of molecular weight (Mr) 47,000-60,000 (ref. 6). Monoclonal antibody 2.4G2 is suitable as a tool for functional studies of FcR because it binds to a functional site of the receptor and induces cellular responses that are normally associated with the occupied receptor. We reported previously that binding of ligands to the macrophage FcR resulted in Na+/K+ ion fluxes through the plasma membrane, and that similar ion fluxes were observed in proteoliposomes containing reconstituted FcR. We have now incorporated FcR into planar lipid bilayers and report here that FcR gamma 2b/gamma 1 forms ligand-dependent cation-selective ion channels, with a conductance of 60 pS in 1 M KCl and an average open channel lifetime of 250 ms. The conductance decays to baseline levels within a few minutes. These results suggest a receptor-ionophore model for the signalling of phagocytosis and inflammatory responses.  相似文献   

11.
Brown S  Heinisch I  Ross E  Shaw K  Buckley CD  Savill J 《Nature》2002,418(6894):200-203
Macrophage recognition and ingestion of 'self' cells undergoing apoptosis in vivo protects tissues from the toxic contents of dying cells and modulates macrophage regulation of inflammatory and immune responses. However, the complex molecular mechanisms mediating macrophage discrimination between viable and apoptotic cells are poorly understood. In particular, little is known of why viable nucleated cells are not engulfed by macrophages. To reveal active repulsion of viable cells and to seek specific capture or 'tethering' of apoptotic cells, we studied macrophage binding of viable and apoptotic leukocytes under conditions of flow. We found that homophilic ligation of CD31 (ref. 4) on viable leukocytes promoted their active, temperature-dependent detachment under low shear, whereas such CD31-mediated detachment was disabled in apoptotic leukocytes, promoting tight binding and macrophage ingestion of dying cells. Here we propose that CD31 (also known as platelet-endothelial cell adhesion molecule-1, PECAM-1) is an example of a cell-surface molecule that prevents phagocyte ingestion of closely apposed viable cells by transmitting 'detachment' signals, and which changes function on apoptosis, promoting tethering of dying cells to phagocytes.  相似文献   

12.
Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease   总被引:8,自引:0,他引:8  
Metabolomics studies hold promise for the discovery of pathways linked to disease processes. Cardiovascular disease (CVD) represents the leading cause of death and morbidity worldwide. Here we used a metabolomics approach to generate unbiased small-molecule metabolic profiles in plasma that predict risk for CVD. Three metabolites of the dietary lipid phosphatidylcholine--choline, trimethylamine N-oxide (TMAO) and betaine--were identified and then shown to predict risk for CVD in an independent large clinical cohort. Dietary supplementation of mice with choline, TMAO or betaine promoted upregulation of multiple macrophage scavenger receptors linked to atherosclerosis, and supplementation with choline or TMAO promoted atherosclerosis. Studies using germ-free mice confirmed a critical role for dietary choline and gut flora in TMAO production, augmented macrophage cholesterol accumulation and foam cell formation. Suppression of intestinal microflora in atherosclerosis-prone mice inhibited dietary-choline-enhanced atherosclerosis. Genetic variations controlling expression of flavin monooxygenases, an enzymatic source of TMAO, segregated with atherosclerosis in hyperlipidaemic mice. Discovery of a relationship between gut-flora-dependent metabolism of dietary phosphatidylcholine and CVD pathogenesis provides opportunities for the development of new diagnostic tests and therapeutic approaches for atherosclerotic heart disease.  相似文献   

13.
Immune recognition. A new receptor for beta-glucans.   总被引:26,自引:0,他引:26  
G D Brown  S Gordon 《Nature》2001,413(6851):36-37
The carbohydrate polymers known as beta-1,3-d-glucans exert potent effects on the immune system - stimulating antitumour and antimicrobial activity, for example - by binding to receptors on macrophages and other white blood cells and activating them. Although beta-glucans are known to bind to receptors, such as complement receptor 3 (ref. 1), there is evidence that another beta-glucan receptor is present on macrophages. Here we identify this unknown receptor as dectin-1 (ref. 2), a finding that provides new insights into the innate immune recognition of beta-glucans.  相似文献   

14.
Zheng J  Umikawa M  Cui C  Li J  Chen X  Zhang C  Huynh H  Hyunh H  Kang X  Silvany R  Wan X  Ye J  Cantó AP  Chen SH  Wang HY  Ward ES  Zhang CC 《Nature》2012,485(7400):656-660
How environmental cues regulate adult stem cell and cancer cell activity through surface receptors is poorly understood. Angiopoietin-like proteins (ANGPTLs), a family of seven secreted glycoproteins, are known to support the activity of haematopoietic stem cells (HSCs) in vitro and in vivo. ANGPTLs also have important roles in lipid metabolism, angiogenesis and inflammation, but were considered 'orphan ligands' because no receptors were identified. Here we show that the immune-inhibitory receptor human leukocyte immunoglobulin-like receptor B2 (LILRB2) and its mouse orthologue paired immunoglobulin-like receptor (PIRB) are receptors for several ANGPTLs. LILRB2 and PIRB are expressed on human and mouse HSCs, respectively, and the binding of ANGPTLs to these receptors supported ex vivo expansion of HSCs. In mouse transplantation acute myeloid leukaemia models, a deficiency in intracellular signalling of PIRB resulted in increased differentiation of leukaemia cells, revealing that PIRB supports leukaemia development. Our study indicates an unexpected functional significance of classical immune-inhibitory receptors in maintenance of stemness of normal adult stem cells and in support of cancer development.  相似文献   

15.
16.
The macrophage scavenger receptor is a trimeric membrane glycoprotein with unusual ligand-binding properties which has been implicated in the development of atherosclerosis. The trimeric structure of the bovine type I scavenger receptor, deduced by complementary DNA cloning, contains three extracellular C-terminal cysteine-rich domains connected to the transmembrane domain by a long fibrous stalk. This stalk structure, composed of an alpha-helical coiled coil and a collagen-like triple helix, has not previously been observed in an integral membrane protein.  相似文献   

17.
Innate immune cells must be able to distinguish between direct binding to microbes and detection of components shed from the surface of microbes located at a distance. Dectin-1 (also known as CLEC7A) is a pattern-recognition receptor expressed by myeloid phagocytes (macrophages, dendritic cells and neutrophils) that detects β-glucans in fungal cell walls and triggers direct cellular antimicrobial activity, including phagocytosis and production of reactive oxygen species (ROS). In contrast to inflammatory responses stimulated upon detection of soluble ligands by other pattern-recognition receptors, such as Toll-like receptors (TLRs), these responses are only useful when a cell comes into direct contact with a microbe and must not be spuriously activated by soluble stimuli. In this study we show that, despite its ability to bind both soluble and particulate β-glucan polymers, Dectin-1 signalling is only activated by particulate β-glucans, which cluster the receptor in synapse-like structures from which regulatory tyrosine phosphatases CD45 and CD148 (also known as PTPRC and PTPRJ, respectively) are excluded (Supplementary Fig. 1). The 'phagocytic synapse' now provides a model mechanism by which innate immune receptors can distinguish direct microbial contact from detection of microbes at a distance, thereby initiating direct cellular antimicrobial responses only when they are required.  相似文献   

18.
C Ra  M H Jouvin  U Blank  J P Kinet 《Nature》1989,341(6244):752-754
Fc receptors for immunoglobulins are found on many immune cells and trigger essential functions of the immune defence system. With the exception of the high-affinity receptor for immunoglobulin E (Fc epsilon RI), these receptors were thought to consist of single polypeptides. Fc epsilon RI is a tetrameric complex of one alpha-subunit, one beta-subunit and two gamma-subunits. Here we report the cloning of a polypeptide identical to the gamma-chains of Fc epsilon RI, from mouse macrophages that do not express this receptor. Biosynthetic labelling and gene transfer together show that these gamma-chains associate with one of the macrophage receptors (Fc gamma RIIa). The human homologue, Fc gamma RIII (CD16), from natural killer cells is also expected to associate with gamma-chains. It is possible that these gamma-chains and the homologous zeta-chains of the T-cell antigen receptor belong to a new family of related proteins which share a common role in the signal transducing pathway.  相似文献   

19.
G-protein-coupled receptors are the largest class of cell-surface receptors, and these membrane proteins exist in equilibrium between inactive and active states. Conformational changes induced by extracellular ligands binding to G-protein-coupled receptors result in a cellular response through the activation of G proteins. The A(2A) adenosine receptor (A(2A)AR) is responsible for regulating blood flow to the cardiac muscle and is important in the regulation of glutamate and dopamine release in the brain. Here we report the raising of a mouse monoclonal antibody against human A(2A)AR that prevents agonist but not antagonist binding to the extracellular ligand-binding pocket, and describe the structure of A(2A)AR in complex with the antibody Fab fragment (Fab2838). This structure reveals that Fab2838 recognizes the intracellular surface of A(2A)AR and that its complementarity-determining region, CDR-H3, penetrates into the receptor. CDR-H3 is located in a similar position to the G-protein carboxy-terminal fragment in the active opsin structure and to CDR-3 of the nanobody in the active β(2)-adrenergic receptor structure, but locks A(2A)AR in an inactive conformation. These results suggest a new strategy to modulate the activity of G-protein-coupled receptors.  相似文献   

20.
G-protein-coupled receptors (GPCRs) are eukaryotic integral membrane proteins that modulate biological function by initiating cellular signalling in response to chemically diverse agonists. Despite recent progress in the structural biology of GPCRs, the molecular basis for agonist binding and allosteric modulation of these proteins is poorly understood. Structural knowledge of agonist-bound states is essential for deciphering the mechanism of receptor activation, and for structure-guided design and optimization of ligands. However, the crystallization of agonist-bound GPCRs has been hampered by modest affinities and rapid off-rates of available agonists. Using the inactive structure of the human β(2) adrenergic receptor (β(2)AR) as a guide, we designed a β(2)AR agonist that can be covalently tethered to a specific site on the receptor through a disulphide bond. The covalent β(2)AR-agonist complex forms efficiently, and is capable of activating a heterotrimeric G protein. We crystallized a covalent agonist-bound β(2)AR-T4L fusion protein in lipid bilayers through the use of the lipidic mesophase method, and determined its structure at 3.5?? resolution. A comparison to the inactive structure and an antibody-stabilized active structure (companion paper) shows how binding events at both the extracellular and intracellular surfaces are required to stabilize an active conformation of the receptor. The structures are in agreement with long-timescale (up to 30?μs) molecular dynamics simulations showing that an agonist-bound active conformation spontaneously relaxes to an inactive-like conformation in the absence of a G protein or stabilizing antibody.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号