共查询到17条相似文献,搜索用时 46 毫秒
1.
gSpan算法是一种高效的频繁子图挖掘算法,它通过最右扩展图的标准编码得到图集中的所有频繁子图,但它需要通过子图同构判断来计算支持度,由于子图同构问题是NP完全问题,其计算比较复杂.针对上述问题提出一种优化的算法IgSpan,通过改进的ADI++存储结构将图的最右扩展和支持度的计算相结合,避免直接的子图同构判断,经实验... 相似文献
2.
提出的新算法对gSpan算法做了适用性改进,算法所采用的图编码技术与传统的频繁子图挖掘(FSG),快速频繁子图挖掘(FFSM),基于先验的图挖掘(AGM)等算法对图结构的编码均不同,由于对有向图进行了新的二维特征定义,因此可使算法适用范围有效地扩展至对有向图的学习,称之为基于对gSpan改进的有向频繁子图挖掘算法(DF... 相似文献
3.
图数据的挖掘工作是数据挖掘工作中的重要组成部分,已经有许多人在这个领域进行了深入的研究.由于数据获取不可避免噪音数据,故在挖掘频繁图时考虑近似十分重要.然而许多此前的工作只考虑了子图间编辑距离(Graph Edit Distance,GED)的绝对值,而没有考虑子图间编辑距离与子图大小的相对关系.提出了一种在单图中进行近似频繁子图挖掘的新算法,并在计算近似程度时考虑当前子图的大小.该算法通过对近似频繁子图的大小上限进行预测,并通过局部反单调性进行剪枝,提高了算法的效率.实验表明,该算法能够挖掘出传统算法无法发现的近似频繁子图,且相比对比算法具有更好的时间性能. 相似文献
4.
挖掘大量移动轨迹数据获取移动性知识,可为城市交通、智慧医疗等众多行业领域提供辅助决策.但现有的移动性知识表达方式过于简单,不能反映产生移动轨迹数据复杂系统的潜在运行规律,需要从网络的视角分析移动性知识之间的复杂关系.提出了一种基于有向频繁子图挖掘的移动性模式网络构建方法,包括移动轨迹数据到轨迹有向图的转换,基于有向图的... 相似文献
5.
AGM算法和HSIGRAM算法是两个经典的频繁子图挖掘算法,在基于图的数据挖掘中有重要的应用.从算法思想和应用技术两个方面分析了AGM算法和HSIGRAM算法的异同点,结合基于图的数据挖掘的特性,提出针对这两个算法的改进策略. 相似文献
6.
针对传统文本分类算法的分类精度低和计算复杂度高的问题,提出一种基于加权频繁子图挖掘的图模型文本分类算法。首先将文档集表示成图集;然后运用加权图挖掘算法提取频繁子图;最后,对特征向量进行分类。提出的算法仅提取最重要的子图,使其整体具有较好的分类效果和较高的计算效率。为评估该算法有效性,将其与多种现有分类算法分别对一个数据集进行分类实验,实验结果表明,提出的算法具有更高的识别精度和更少的运行时间。 相似文献
7.
频繁模式挖掘中基于FP-growth的算法需要扫描两次事务数据库,预先给定支持度,且不支持时间敏感型数据。本文提出了一种基于频繁模式有向无环图的数据流频繁模式挖掘算法,它根据事务到来的时间给每个事务一个序号,每个事务中的数据项在存储前按数据项的顺序进行调整,频繁模式有向无环图的构建遵循这个顺序并用序号来记录事务与数据项的包含关系,模式增长过程只需要增加有向边上的序号。通过逆向遍历带有相同序号的有向边,产生条件模式基,根据动态定义的阈值抽取条件模式基信息,一次扫描数据库得到频繁模式。实验结果表明,本文算法的执行效率优于FP-growth算法,且存储节点的数目明显减少。 相似文献
8.
唐德权 《湖南文理学院学报(自然科学版)》2006,18(3):72-74,79
关联知识挖掘算法中一种广为人知的算法就是Aprior算法,之后所有关联规则挖掘算法的基本思想都是基于频繁项目集发现算法的基础上进行了改进.为了提高关联规则挖掘效率,首先回顾了基于图的关联规则挖掘算法;然后,在此基础上进行了改进,把关联规则挖掘中寻找频繁项集的问题转换为图中寻找完全子图的问题,通过在图中查找完全子图来寻找频繁项集.提出了一种基于图的关联规则挖掘改进算法,并且对原算法和改进的算法从时间和空间的性能进行了比较分析,得出改进的算法是有效可行的.最后从实验结果得出结论GenerateItemsets算法比DGBFIG算法优. 相似文献
9.
刘丽 《湖南城市学院学报(自然科学版)》2009,18(3)
通过对Apriori算法的频繁项目集的分析研究,给出了基于图的频繁项集挖掘算法.该算法在求频繁K-项集的过程中只需一次扫描数据库,避免了Apriori算法需多次扫描数据库的不足.同时,由于在有向图中利用有限节点之间的路径求频繁K-项集,该算法减少了Apriori算法中需多次进行连接运算的不足. 相似文献
10.
采用频繁子图作为特征子图,对不确定图进行分类.提出AGF频繁子图挖掘算法,该算法将频繁子图挖掘问题转换为频繁项挖掘问题,可有效提高频繁子图生成效率.利用频繁子图构造分类模型,首次应用于不确定图,通过实验证明,给出的分类算法具有良好的分类正确率. 相似文献
11.
通过分析传统中医药物间的影响关系和图结构数据节点间关系的共通性, 将中医方剂学中处方的药物联系按规则转换为图结构数据, 采用频繁闭图挖掘算法CloseGraph对图结构化的处方数据进行操作, 得到图结构中代表具有特定功能的频繁闭图, 再转换解释获得各中医方剂中对特定病症起决定疗效的核心药物组合及组合形式. 结果表明, 该方法可行、 有效, 成功地将图挖掘策略引入了中医方剂研究领域. 相似文献
12.
基于数组的频繁项目集的挖掘算法 总被引:4,自引:0,他引:4
挖掘关联规则是数据挖掘研究的一个重要方面.然而,目前提出的算法仍存在一些问题,如复杂的数据结构、大量的候选频繁项目集生成等等.本文提出使用了一种简单的数据结构——数组,并提出了基于数组的一种新的频繁项目集的挖掘算法. 相似文献
13.
对关联规则挖掘问题建立了完全格描述并给出了问题规模下限,提出了一种基于搜索空间划分的项集频度计算模型.在对FP-树进行改造的基础上提出基于划分思想的频繁项集挖掘算法UPM,算法的项集频度计算和非频繁项目裁剪都基于空间划分的思想.性能实验表明,与FP-Growth算法相比,UPM算法的时空效率有较大提高. 相似文献
14.
叶福兰 《成都大学学报(自然科学版)》2014,(2):148-150,162
基于条件模式树的最大频繁模式挖掘算法在挖掘过程中将扫描事务数据库两次,且产生了大量的候选项目集,产生最大频繁模式过程中比较次数较多,总体效率较低.提出改进后的最大频繁模式挖掘策略,利用二维表保存事务出现项目的情况,通过最大频繁模式的相关性质减少了挖掘的项数及产生的频繁模式集,减少比较的次数. 相似文献
15.
基于FP-tree最大频繁模式超集挖掘算法 总被引:1,自引:0,他引:1
数据挖掘应用中的最大频繁项集挖掘算法大多存在候选项目集冗余问题,造成时间和空间的浪费.针对此问题,通过构造条件FP-tree,对不符合要求的项目进行剪除并对MFIT算法进行改进,提出一种基于FP-tree的最大频繁模式超集挖掘算法.此算法无需产生大量的候选集,同时减少数据集扫描次数,降低数据库遍历时间,提高算法效率.实验证明,此算法在降低候选项目集冗余度的同时有效减少了算法运行时间. 相似文献
16.
现有的Web日志频繁访问路径挖掘算法往往不能在追求时间效率的同时准确挖掘出符合用户浏览顺序的频繁路径.提出了有效挖掘Web日志中频繁访问路径的算法,将事务数据库转换为Web访问路径树,根据支持度进行剪枝构造最长前缀频繁子路径树,然后进行频繁路径挖掘,实验证实了此方法的有效性,并分析了支持度设置对频繁路径生成的影响. 相似文献
17.
产生频繁项目集是关联规则挖掘中的一个关键步骤.在对Apriori算法分析的基础上,提出了一种基于集合和位运算的频繁项目集挖掘算法.该算法用位视图表示使用了每个项目的事务,通过对位视图进行位运算来计算每个项目集的支持数,避免了Apriori算法中多次扫描数据库的问题. 相似文献