首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 328 毫秒
1.
通过引入液相分数标量描述界面熔融区,能量方程中将潜热转换为热焓源项,而动量方程则引入‘Darcy‘源项,由此建立统一的液和固相控制方程,实现在固定网格下求解具有移动界面的熔化和凝固过程.应用该模型详细分析不锈钢表面激光加工过程热传导、Marangoni和热浮力三种换热机制对熔化过程和熔池形状的影响.  相似文献   

2.
固体表面激光加工熔池特性的数值分析   总被引:3,自引:0,他引:3  
通过引入液相分数标量描述界面熔融区,能量方程中将潜热转换为热焓源项,而动量方程则引入‘Darcy’源项,由此建立统一的液和固相控制方程,实现在固定网格下求解具有移动界面的熔化和凝固过程.应用该模型详细分析不锈钢表面激光加工过程热传导、Marangoni和热浮力三种换热机制对熔化过程和熔池形状的影响.  相似文献   

3.
利用旋转GAUSS曲面体新型热源模型,忽略深熔激光焊时小孔对传热的影响,建立了移动激光热源作用下的三维数学模型。利用PHOENICS3.4软件,模拟了SUS304不锈钢深熔激光焊接热过程的温度场和熔池熔合线形状,得到了不同焊接速度下的温度场分布云图和"钉头"状的熔池形状,试验表明数值模拟结果与试验结果基本吻合。  相似文献   

4.
焊接速度对GTAW三维温度场影响规律的数值分析   总被引:1,自引:0,他引:1  
基于有限元软件SYSEWELD,采用双椭球体热源模型,建立了运动电弧作用下的GTAW焊接不锈钢薄板三维瞬态焊接热过程的数值分析模型。利用所建模型,预测了焊接速度对三维焊接温度场与熔池形状参数的影响,并进行了试验对比。计算所得焊接温度场与熔池形状特征参数随不同焊接速度的变化规律与实际情况基本一致。  相似文献   

5.
以TIG焊熔池为研究对象,建立不锈钢薄板三维移动TIG焊熔池的数学模型.模型中考虑浮力、电磁力、表面张力、边界条件和热物性参数.利用Fluent软件,求解控制方程组,得到不锈钢薄板TIG焊接过程运动的熔池形状、温度场和流场.并用激光器发射激光点阵到电弧下方工件,由熔池表面镜面反射于成像屏上,高速摄像获得反射的激光点阵,通过数据恢复处理得到熔池边缘信息,用模拟结果进行对比分析.结果表明,所建立的三维运动熔池的模型是准确的,模拟所获得的1 820K等温线与试验获得的熔池边缘吻合良好,模拟熔池截面与熔透焊缝截面形态也有着较好的吻合.  相似文献   

6.
基于有限元软件SYSEWELD,采用双椭球体热源模型,建立了运动电弧作用下的GTAW焊接不锈钢薄板三维瞬态焊接热过程的数值分析模型。模型考虑了材料的热物理性能参数、相变潜热与温度的非线性关系。利用所建模型,定量地预测了焊接电流对三维焊接温度场与熔池形状尺寸的影响,并进行了试验对比。计算所得焊接温度场与熔池形状特征参数随不同焊接电流的变化规律与实际情况基本一致。  相似文献   

7.
基于磁流体力学(magnetohydrodynamics,MHD)模型,采用动网格技术(dynamic mesh method,DMM)跟踪电弧-熔池界面,建立了钨极惰性气体(tungsten insert gas,TIG)保护焊过程耦合流动、传热、凝固熔化及动网格界面跟踪的数学模型.首先计算自由燃弧,得到了准确的弧区速度、温度及压力等参数.然后分别验证了熔池内电磁力、热浮力、等离子流曳力和Marangoni力4个驱动力.考虑上述电弧-熔池相互作用,基于压力的动态平衡跟踪界面,计算了304不锈钢TIG焊过程,得到了等离子体冲击造成的熔池中央下凹及边缘上凸现象.结果表明,本模型可以得到更准确的界面及熔池形状.  相似文献   

8.
基于SYSWELD软件平台,采用双椭球体移动热源模式,利用有限元方法建立了运动电弧作用下GTAW焊接不锈钢薄板焊接热场的三维动态有限元分析模型。利用所建模型,对GTAW焊接热场和熔池形状参数的动态演变进行了预测,达到宏观准稳态的时间与试验结果基本一致。  相似文献   

9.
采用复合三维锥体热源模式,针对小孔等离子弧焊接工艺条件,建立了适合于K-PAW焊接不锈钢0Cr18Ni9厚板三维动态焊接热过程的数学模型和物理模型。利用所建立的模型,综合考虑材料的热物理性能参数、相变潜热与温度的非线性关系,计算了K-PAW熔池形状及三维温度场的动态演变,并将温度场的数值计算结果同实验结果进行了比较,表明上、下表面的熔池宽度及熔合线在焊件内部的走向计算结果与实测结果吻合较好,证明复合三维锥体热源模型能够较好地反映K-PAW电弧的热流密度分布。  相似文献   

10.
针对激光加工过程中,熔池自由液面的静态特性,从熔池自由面的表面张力变化入手,应用热焓源项法和多孔介质模型,发展了对金属流体区和固体区统一的数值分析方法,揭示了熔池内部的流动、换热规律和熔池自由面的表面张力分布.通过熔池自由面的静态受力分析,结合熔池内计算结果,分析了对熔池自由面形状的形成.应用该模型对AISI304不锈钢的某一激光加工过程求解,分析了不同加工工艺以及工件物性对熔池自由面形状的影响.  相似文献   

11.
旋转磁场对激光焊缝金属显微组织的影响   总被引:1,自引:0,他引:1  
研究了旋转磁场对激光焊304不锈钢、Al-12Si合金焊缝金属显微组织,以及304不锈钢与Al-12Si合金连接缺陷的影响.研究结果表明:旋转磁场能有效地对激光焊熔池中液态304不锈钢、A1:12Si合金进行搅拌,抑制柱状晶的产生,细化焊缝金属晶粒.磁场的旋转速率越高,对液态的电磁搅拌作用越强,焊缝金属的晶粒越细小、Al-12Si合金共晶组织越均匀.旋转磁场能消除304不锈钢与Al-12Si合金激光焊焊缝金属中的缺陷,提高304不锈钢与Al-12Si合金焊接接头的性能.  相似文献   

12.
对异厚度铝锂合金激光拼焊的温度场进行ANSYS三维瞬态有限元分析。用过渡网格划分网格以保证焊缝处网格足够细小,从而提高计算精度和效率。热源模型选取高斯函数分布,移动热源的加载则利用ANSYS软件的APDL语言编写程序实现,同时利用多步循环来实现对激光焊接过程的模拟,得到相应的温度场分布。从模拟结果可看出,激光焊接过程温度场呈椭圆分布,焊件上形成了准稳态温度场。薄厚两板温度场存在差异,薄板温度场范围、熔池尺寸、熔化范围均大于厚板。为研究材料在激光加工过程的性能改变提供参考。  相似文献   

13.
深熔钨极气体保护焊(deep penetration TIG welding,DP-TIG焊)具有焊接熔深大的优点,在厚板焊接领域具有极大优势.为了拓展DP-TIG焊在薄板高速焊领域的应用,分别针对低碳钢和不锈钢板材,调整焊接电流、焊接速度、钨极锥角、气体成分等工艺参数,进行了薄板高速焊接工艺研究.结果表明:相对常规TIG焊,对于2 mm厚的低碳钢板焊接速度提高了75%,对于3 mm厚的不锈钢板,焊接速度提高了2倍多,并且随着钨极角度的减小,焊接速度可以进一步提高,如果保护气体中引入一定量的H2可以进一步提高不锈钢DP-TIG焊的最大焊接速度.  相似文献   

14.
以0.5 mm厚的304不锈钢薄板为研究对象,采用热-结构间接耦合法,获取其在3 000 W功率光纤激光器点焊加工过程中温度场和应力场的分布特点及变化特性.在温度场模拟过程中采用修正的锥形热源模型,并将模拟得到的焊点形状与实验得到的形状进行对比.结果显示:运用该修正热源模拟得到的温度场分布特点与实际加工过程相吻合; 模拟得到熔池的凝固速度均在4 000 K·s-1以上,属于远离平衡态的快速凝固; 在焊接过程中,计算域的最大等效应力均分布在夹具位置,且在熔池周围出现环状的高应力区.  相似文献   

15.
脉冲激光表面熔凝熔池演变数值模拟   总被引:2,自引:0,他引:2  
为了研究脉冲激光作用过程中表面快速熔化与凝固的过程,建立了脉冲激光作用熔池金属熔凝的二维热流耦合模型.考虑重力、材料物性随温度的变化等的影响,利用焓-多孔度方法和用户自定义函数对表面熔化凝固的固液相界面演化进行了分析;采用熔化/凝固模型对熔池内的瞬态温度场、速度场和流场进行了数值模拟,并以实验验证模拟结果.计算结果表明:表面熔化与凝固的固液相界面的移动呈现不同状态;在熔凝过程中,熔池内除存在一对方向相反的主环流外,还存在多个环流;流体的速度随着温度的降低而减小且速度最大的区域位于熔池表面附近.  相似文献   

16.
混合钢U肋加劲板焊接残余应力影响因素分析   总被引:1,自引:0,他引:1       下载免费PDF全文
建立三维热弹塑性有限元模型,对混合钢U肋加劲板的焊接温度场和应力场进行模拟,并应用盲孔法残余应力测试试验验证了该数值模拟方法的正确性.应用经验证的焊接残余应力数值模拟方法,研究散热系数、焊接有效功率、熔池面积大小、焊接速度变化对混合钢U肋加劲板焊接残余应力分布与大小的影响.结果显示,焊接有效功率对混合钢U肋加劲板的残余应力分布的影响最大,其次为熔池面积及焊接速度,散热系数影响很小;母板和U肋的残余拉应力和残余压应力大小、残余拉应力区分布宽度、母板残余拉应力合力和残余压应力合力,与焊接有效功率和熔池面积大小成正比变化,与焊接速度成反比变化;而U肋残余拉应力合力和残余压应力合力,与焊接有效功率成正比变化,与熔池面积大小和焊接速度成反比变化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号