首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
兰州百合和野百合组织培养及快速繁殖研究   总被引:42,自引:1,他引:42  
以兰州百合(Lilium davidii Var.Unicolor (Hoog)Cotton)和野百合(Lilium brownii F.E.Brown ex Miellez) 鳞茎及叶片为外植体获得再生植株,并建立起快速无性繁殖系。兰州百合鳞茎的最佳诱导培养基为MS+0.6-1.0mg/LBA+0.2mg/LNAA;芽增殖培养基选MS+0.5-0.6mg/LBA 0.1mg/L NAA;生根培养基为1/2MS+0.2mg/l IAA 0.1%活性炭。野百合鳞茎及叶的最佳诱导培养基分别为MS+0.1-0.5mg/LBA 0.1-0.2mg/L NAA或0.5mg/L IAA和MS+0.7mg/L BA 0.07mg/L NAA;鳞茎诱导的芽的增殖培养基为MS+0.2-0.4mg/L BA 0.1mg/L NAA;生根培养基为1/2MS+0.15mg/L NAA 0.1%活性炭。  相似文献   

2.
选用741杨的茎段和生根组培苗叶片为外植体,采用不同浓度组合的BA和NAA对741杨的离体快繁和叶片再生体系进行了研究。结果表明:741杨芽增值的最佳培养基为MS+6-BA 0.5mg/L+NAA 0.1mg/L;最佳生根培养基为MS+IBA 0.3mg/L;741杨叶片不定芽诱导的最佳培养基为MS+6-BA 1.0mg/L+NAA 0.1mg/L。试验还研究了不同着生位置的叶片以及叶片在培养基上的放置方式对741杨叶片再生的影响。  相似文献   

3.
为加快南川百合的繁殖速度,对南川百合进行离体组织培养研究,结果表明:南川百合外植体的诱导率从大到小依次为:鳞片,花丝,子房,茎段,叶片.用鳞片作为外植体时,下部的诱导率最高,中部次之,上部最差.鳞片诱导丛生苗的最佳培养基为MS+6-BA 1.5mg/L+NAA 0.5mg/L;用花丝和子房作为外植体时,诱导丛生苗的最佳培养基为MS+6-BA 0.5mg/L+NAA 0.5mg/L;用再生苗的叶片作为外植体时,诱导丛生苗的最佳培养基为MS+6-BA 1.0mg/L+NAA 0.5mg/L;用再生苗的茎段作为外植体时,诱导丛生苗的最佳培养基为MS+6-BA 1.5mg/L+NAA 1.0mg/L.用于不定芽增殖的最佳培养基为MS+6-BA 1.0mg/L+NAA0.05mg/L.无根苗生根的最佳培养基为1/2MS+NAA 0.5mg/L,生根率可达到86.7%,移栽后成活率很高.  相似文献   

4.
以兰州百合鳞片作为外植体进行组织培养,分别对其进行芽诱导、增殖、生根培养,得到了兰州百合鳞片组织培养的最佳培养基配方:(1)芽诱导培养基:MS+BA0.6mg/L+NAA0.2mg/L+琼脂7.3g/L+蔗糖30g/L,pH5.8;(2)增殖培养基:Ms+BA0.8mg/L+NAA0.05mg/L+琼脂7.3g/L+蔗糖30g/L,pH5.8;(3)生根培养基:MS+BA0.05mg/L+NAA0.8mg/L+琼脂7.3g/L+蔗糖30g/L,pH5.8.观察与分析结果表明,外植体在前两种培养基上的繁殖速率较前人快约15d,第3种培养基与前人的相当,比其快2d.  相似文献   

5.
兰州百合的组织培养   总被引:4,自引:0,他引:4  
以兰州百合鳞片作为外植体进行组织培养,分别对其进行芽诱导、增殖、生根培养,得到了兰州百合鳞片组织培养的最佳培养基配方:(1)芽诱导培养基:MS+BA0.6mg/L+NAA0.2mg/L+琼脂7.3g/L+蔗糖30g/L,pH5.8;(2)增殖培养基:Ms+BA0.8mg/L+NAA0.05mg/L+琼脂7.3g/L+蔗糖30g/L,pH5.8;(3)生根培养基:MS+BA0.05mg/L+NAA0.8mg/L+琼脂7.3g/L+蔗糖30g/L,pH5.8.观察与分析结果表明,外植体在前两种培养基上的繁殖速率较前人快约15d,第3种培养基与前人的相当,比其快2d.  相似文献   

6.
四季秋海棠的离体培养及植株再生   总被引:1,自引:0,他引:1  
以四季秋海棠的叶片为外植体,对其进行了离体快繁的研究.结果表明:附加BA 1mg/L和NAA 0.1mg/L的MS培养基可诱导叶片外植体产生大量不定芽与愈伤组织,而诱导生根的最佳培养基是1/2MS IBA0.5mg/L.试管苗经过炼苗移栽,成活率较高。  相似文献   

7.
马铃薯组织培养技术研究   总被引:4,自引:0,他引:4  
以马铃薯茎尖、茎段和芽体3种不同外植体为材料,用浓度为1.0mg/L的NAA与不同浓度的2,4-D组合诱导愈伤组织;用浓度为0.2mg/L的NAA和不同浓度的BA组合诱导不定芽。试验结果表明:NAA1.0mg/L 2,4-D1.5mg/L最适于愈伤组织的诱导,NAA0.2mg/L BA0.3ms/L最适于不定芽的诱导;NAA对马铃薯根的分化有促进作用。  相似文献   

8.
金边瑞香不定芽的增殖培养   总被引:1,自引:0,他引:1  
陈志萍  闵炜 《江西科学》2009,27(1):84-88
通过2次单因子试验,研究了BA(0.5mg/L~5mg/L)和NAA(0.1mg/L~1mg/L)在金边瑞香不定芽增殖培养中的作用。BA在诱导产生不定芽的过程中起着主导作用。BA浓度在0.5mg/L时,培养6周产生的不定芽总数不多,但有效芽(〉1cm)相对较多,平均3.9个,随着BA使用浓度增加,产生的不定芽总数增多,但有效芽数量减少,BA浓度在3mg/L以上时,平均只有1个有效芽。NAA浓度在0.2mg/L-0.5mg/L范围内,平均有效芽数在3.8~3.6个,浓度增加到1mg/L时,有效芽数减少到平均1.8个。试验确定合适的不定芽增殖培养基为MS+BA0.5mg/L+NAA0.2mg/L。  相似文献   

9.
新铁炮百合组织培养和快速繁殖研究   总被引:39,自引:4,他引:35  
以日本新铁炮百合鳞茎及叶为外植体成功获得再生植株,并建立了快速无性繁殖系。鳞片和叶的最佳诱导培养基分别为MS+0.4-1mg/L BA 0.2mg/L NAA;MS 0.1mg/L(或0.5mg/L)BA+0.1mg/L NAA或0.5mg/L IBA。芽增殖培养基选MS+0.2-0.5mg/L BA 0.1mg/L NAA或0.2mg/L IBA。生根培养基为1/2MS+0.1mg/L IBA 0.1%活性炭。  相似文献   

10.
福建省山樱花的组织培养及植株再生   总被引:5,自引:0,他引:5  
以春季萌发的福建山樱花嫩枝为外植体诱导丛生芽 。在1/4MS+BA1.0mg/L IBA0.1mg/L的培养基上,其丛生芽诱导率达87.5%;在继代培养中选择MS+BA1.0mg/L IBA0.1mg/L GA30.3mg/L或KT1.0mg/L NAA0.1mg/L BA30.3mg/L培养基,不定芽增殖较快。赤霉素对其不定芽的伸长有明显效果,当芽伸长在3-4cm时,切下置于生根培养基1/2MS+NAA1.0mg/L IBA1.0mg/L BA0.75mg/L中,生根率达90%以上,移栽成活率达95%。  相似文献   

11.
药用植物河北大黄叶片的组织培养研究   总被引:1,自引:0,他引:1  
MS培养基附加 ZT1.0-10.0/IAAO.01-1.0mg/L的不同激素组合,处理河北大黄离体叶片,均能诱导其产生愈伤组织,诱导率为26.7-83.3%,其中以ZT5.0/IAAO.01mg/L效果最好。若采用浓度为BA0.1-3.0/NAA0.1-1.0mg/L的不同激素组合,培养河北大黄离体叶片,也能诱导其产生愈伤组织,诱导率为5-90%,其中BA3.0/NAA1.0mg/L 诱导率最高,同时BAO-3.0/NAA1.0mg/L还能诱导其分化出根、分化率为 3.3-70%。  相似文献   

12.
叶面喷施纳米SiO2对髯毛箬竹的生理调节效应   总被引:1,自引:0,他引:1  
采用不同质量浓度的纳米SiO2(0、150、300、450 mg/L)对髯毛箬竹进行叶面喷施处理,分析纳米SiO2对髯毛箬竹叶片的生理影响。结果表明:各浓度的纳米SiO2处理可不同程度地提高髯毛箬竹叶片的可溶性蛋白、游离氨基酸、全N、全P、全K含量,刺激SOD和POD保护酶活性,降低丙二醛的含量,并表现出一定的浓度和时间效应,总体上以300 mg/L纳米SiO2处理效果最佳。说明300 mg/L的纳米SiO2处理能有效增强髯毛箬竹叶片的营养功能及其对活性氧的清除能力,改善叶片生理功能。  相似文献   

13.
以茶树苗的叶片和幼茎为外植体诱导愈伤组织,比较了不同激素组合对叶片和幼茎诱导愈伤组织的影响.结果表明,叶片和幼茎均能诱导愈伤组织,但幼茎的愈伤组织诱导率较高,叶片的愈伤组织诱导率较低.叶片、幼茎愈伤组织培养的较适培养基是MS 6-BA(0.4 mg/L) 2,4-D(2 mg/L).  相似文献   

14.
驱蚊草组织培养及其再生体系的建立与优化   总被引:8,自引:0,他引:8  
通过对驱蚊草离体叶片和茎段的培养及植株再生的研究,成功地建立了驱蚊草组织培养快繁技术体系.用0.1%升汞对叶片、叶柄和茎段进行消毒,最佳消毒时间分别为6.5、6.0、7.0 m in;叶片和茎段不定芽诱导的最适培养基为M S BA(1.0 m g/L) NAA(1.0 m g/L),叶柄为M S BA(0.5 m g/L) NAA(0.5 m g/L);不定芽的最适增殖培养基为M S BA(0.75 m g/L) NAA(0.6 m g/L) GA3(0.2 m g/L),增殖倍数为6.1;最适生根培养基为1/2 M S培养基,生根率92%,平均每株生根数为10条.  相似文献   

15.
利用野生裂叶秋海棠叶片及叶柄培养,通过两种方式获得大量再生植株。(1)直接从外植体表面诱导出不定芽,最佳诱导培养基为MS 6-BA 3mg/L,不定芽在培养基MS NAA0.5mg/L 6-BA0.5mg/L增殖成丛生芽.(2)先诱导出愈伤组织,再由愈伤组织分化出大量不定芽.最佳愈伤组织诱导培养基为MS NAA0.5mg/L 2,4-D0.5mg/L 6-BA0.5mg/L,愈伤组织不定芽分化培养基为MS 6-BA 1mg/L,试管苗在含1/5MS无机盐的培养基上生根,之后移栽成活率达85%。  相似文献   

16.
甜叶菊叶片离体培养及试管无性系的建立   总被引:2,自引:0,他引:2       下载免费PDF全文
研究了离体条件下甜叶菊(Stiuia rebaudiana Bertoni)叶片愈伤组织诱导和植株再生技术,离体培养以MS为基本培养基并附加300mg/L水解酪蛋白,离体叶片在BA 0.5mg/L和NAA 0.5mg/L的培养基上诱导形成愈伤组织,在BA 0.5mg/L和NAA0.05mg/L的培养基上可诱导愈伤组织分化不定芽,分化频率为100%,不定芽在White基本培养基并附 加NAA0.01mg/L的培养基上诱导生根,生根率可达100%,炼苗后移栽,成活率达95%以上。  相似文献   

17.
以不同浓度的亚硫酸氢钠溶液对大豆进行叶面喷施,结果表明:75mg/L 的亚硫酸氢钠溶液可以明显抑制大豆叶片 光呼吸,提高净光合速率,增加光合产量。同时还测定了其对叶绿素含量的影响情况,在75mg/L 下叶绿素含量增加尤为明显。 这将为生产实践提供一定的参考依据。  相似文献   

18.
2种无银保鲜剂对切花菊的保鲜效应   总被引:3,自引:0,他引:3  
杨振德  梁机 《广西科学》1999,6(2):154-156
研究保鲜剂(2%蔗糖+50mg/L柠檬酸+100mg/L8-羟基喹啉+1mg/L6-BA)和保鲜剂2号(2%蔗糖+50mg/L水杨酸+100mg/L8-羟基喹啉+1mg/L6-BA)对“黄秀凤”切花菊(Chrysanthemummorifoliumcv.“HuangXiufeng”)瓶插寿命和瓶插期间花枝的水分状况,叶绿素和可溶性蛋白质含量以及过氧化物酶(POD)活性等生理延长2d但与延长花冠寿命  相似文献   

19.
以大叶常绿杜鹃无菌苗的嫩叶为试验起始材料,研究了其离体培养和不定芽再生的过程。结果表明:培养基为MS+ZT(1.0 mg/L)+ NAA(0.1 mg/L)时,大叶常绿杜鹃叶片可直接诱导再生不定芽,诱导率达70%; 也可以通过愈伤组织途径间接诱导出不定芽,愈伤组织诱导培养基为MS+2,4-D(2.0 mg/L)+KT(0.2 mg/L),增殖最佳培养基为MS+ZT(0.5 mg/L)+IBA(0.1 mg/L),愈伤组织分化的最佳培养基为MS+ZT(0.04 mg/L)+NAA(0.01 mg/L); 分化率最高为70%,分化苗数为6~10株; 生根培养基为MS+NAA(0.2 mg/L)+IBA(0.4 mg/L)时,生根率可达90%。腐殖土、黄沙、珍珠岩配比为4:1:1的混合基质较适合常绿杜鹃试管苗的炼苗移栽,成活率为90%。  相似文献   

20.
【目的】探究叶片喷施不同质量浓度的多效唑(PP333)、矮壮素(CCC)、烯效唑(S3307)对板栗苗枝条生长动态及叶片内非结构性碳水化合物(NSC)[可溶性糖(SS)和淀粉(ST)]含量的影响,为板栗化学调控提供理论依据。【方法】以备选砧木3年生板栗‘燕山早丰’(Castanea mollissima‘Yanshanzaofeng’)苗为试验材料,选择15%多效唑可湿性粉剂、50%矮壮素水剂、5%烯效唑可湿性粉剂配置溶液,在花芽分化期选择天气晴朗无风的早晨分别喷施多效唑(50、100、150 mg/L)、矮壮素(100、150、200 mg/L)和烯效唑(30、60、90 mg/L),以喷清水为对照(CK),各处理进行整株喷施,直至叶面布满水珠而不滴水为止。试验采用单因素完全随机区组设计,单株为1个小区,每个处理设5个重复。测定分析3种植物生长延缓剂处理下板栗苗木营养枝、标准枝的生长动态及叶片内非结构性碳水化合物的含量。【结果】①多效唑、矮壮素和烯效唑均能显著降低板栗苗木枝条长度,增加枝条直径,对于标准枝喷施30 mg/L烯效唑效果最好,处理后90 d使得标准枝长度较对照减少24.13%,直径增加26.45%;②延缓剂促进苗木枝条粗壮、长度缩短,延缓板栗砧木生长,提高嫁接成活率并有利于嫁接后生长,100 mg/L多效唑对营养枝促壮效果最好,较对照增加36.63%,长度减少17.10%。③延缓剂处理后,板栗叶片可溶性糖含量升高,其中150 mg/L矮壮素处理板栗苗木叶片内可溶性糖含量始终处于最高水平,且显著高于对照,在处理后90 d达到最高(61.95 mg/g)。④不同延缓剂处理对叶片淀粉含量有不同的影响,处理后30 d,100 mg/L矮壮素处理叶片内淀粉含量始终处于最高水平,且显著高于对照,在处理后60 d和90 d,淀粉含量分别高达1.54、1.51 mg/g;⑤3种延缓剂均能提高板栗苗木内非结构性碳水化合物含量,200 mg/L矮壮素处理对苗木非结构性碳水化合物增加效果最好,该浓度处理后的板栗苗木,其叶片内非结构性碳水化合物总量始终处于最高水平,最高达62.60 mg/g,且显著高于对照。【结论】植物生长延缓剂使得板栗苗木枝条粗壮、长度缩短,抑制砧木生长,从而提高板栗嫁接成活率并有利于嫁接后生长,其中60 mg/L烯效唑对标准枝的处理效果最好,100 mg/L多效唑对营养枝促壮效果最好;对板栗苗木喷施延缓剂有利于其叶片的碳供应,200 mg/L矮壮素处理效果最好;在植物生长延缓剂实际应用于板栗苗木培育中,应根据生产目的合理选择不同种类延缓剂及适宜的质量浓度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号