首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
非线性当前统计模型及自适应跟踪算法   总被引:1,自引:0,他引:1  
针对当前统计模型中人为设定时间常数的倒数α值的不合理性,对机动参数α进行建模,并基于粒子滤波的思想,结合UKF滤波算法给出适用于强机动目标跟踪的CS-UKF算法。整个算法能够实时估计参数α,并从这里出发估计目标状态。仿真结果表明在目标强机动时CS-UKF算法比经典CS-KALMAN算法收敛速度更快,状态估计更精确。  相似文献   

2.
基于"当前"统计模型的交互式多模型算法   总被引:6,自引:0,他引:6  
提出了一种基于"当前"统计模型的交互式多模型算法。在交互式多模型算法框架内,计算"当前"统计模型的概率,自适应地调整"当前"统计模型中目标加速度,使其能够反映目标的机动特性,充分发挥了"当前"统计模型和交互式多模型算法的优点,扩大了"当前"统计模型的应用范围,提高了"当前"统计模型的自适应性。Monte Carlo仿真结果表明了该算法的有效性。  相似文献   

3.
机动目标的模糊自适应跟踪算法   总被引:16,自引:0,他引:16  
巴宏欣  赵宗贵  杨飞  董强  张涛 《系统仿真学报》2004,16(6):1181-1183,1186
在当前统计模型的基础上,提出了一种基于当前统计模型(CS)的模糊自适应算法(CSFA)。该算法使用了模糊推理技术,使系统状态噪声方差随着机动特性能够自适应调整,提高了系统在目标作非机动或者弱机动时的跟踪精度以及在强机动时的快速响应能力。蒙特卡罗仿真结果表明了该算法的有效性。  相似文献   

4.
基于当前统计模型的机动目标自适应强跟踪算法   总被引:2,自引:0,他引:2  
在当前统计模型卡尔曼滤波算法的基础上,结合升半正态形模糊分布函数特性,提出了一种加速度方差两段函数自适应调整方法,该方法能自适应逼近目标真实机动并进行准确跟踪。给出了最大加速度自调整方法,克服了模型对目标最大加速度的依赖。引入强跟踪滤波算法,增强了模型对突发机动自适应跟踪的能力。理论分析和仿真结果表明,该算法提高了机动模型和系统模式的匹配程度,增强了系统对强机动目标的跟踪能力,并保持对弱机动和非机动目标良好的跟踪性能,且具有运算量小、跟踪精度高、易于工程化实现等优点。  相似文献   

5.
基于当前统计模型的机动目标自适应跟踪算法   总被引:2,自引:0,他引:2  
当前统计模型及其自适应卡尔曼滤波算法对强机动目标具有很好的跟踪效果,但当机动目标为弱机动和非机动时算法跟踪性能较差。针对这一问题,提出了采用铃形函数作为模糊隶属函数对模型中加速度极值进行修正的自适应滤波算法,调整加速度稳定时的系统过程噪声方差,提高算法的跟踪精度。同时,借鉴强跟踪滤波算法的渐消自适应滤波因子思想,针对加速度突变的情况引入渐消因子对修正的加速度极值进行调节,提高算法在加速度突变情况下的跟踪速度。仿真实验结果表明,算法对弱机动目标和非机动目标的跟踪具有良好的效果。  相似文献   

6.
基于"当前"统计模型的模糊自适应跟踪算法   总被引:10,自引:2,他引:10  
“当前”统计模型需要预先设定目标最大机动加速度,不能很好的适应各种机动情况。采用模糊推理的方法根据测量新息和新息变化率实时调整目标最大机动加速度,自适应各种机动情况。此外,针对多数传感器测量方程的非线性,采用性能较好的Unscented Kalman Filter代替常用的扩展卡尔曼滤波。仿真结果表明,该算法在跟踪精度和收敛速度都优于传统的基于“当前”统计模型的跟踪算法。  相似文献   

7.
通过对"当前"统计模型和常加速模型的分析研究,提出了一种基于小采样周期的机动目标模型。该模型通过构造一个函数来自适应调整常加速模型的过程噪声协方差矩阵。当采样周期T较小时,具有与"当前"统计模型相当甚至更高的跟踪精度和较小的计算量。理论分析和仿真结果表明该模型的有效性。  相似文献   

8.
通过对交互多模式(IMM)算法在机动目标跟踪中的分析,发现该算法在实现过程中滤波模式的确定和模式间转移概率的确定,要求具有一定的经验知识,对不能获得准确先验知识的研究带来了一定的困难。针对这种情况,研究了一种简化的IMM算法跟踪模型,该模型通过检测目标是否发生机动,自适应调整Kalman滤波(KF)的部分参数,从而实现不受IMM算法中有限模式集合限制的机动目标跟踪。通过仿真实验,证明了该算法在机动目标跟踪性能方面与IMM算法具有相似的效果,而在计算复杂度和对先验知识的要求方面有所降低  相似文献   

9.
1 .INTRODUCTIONIn mixing information battle field,it is necessaryto esti mate the targets sport characteristics for i m-proving efficiency of weapons . The military tacticsguided missile defense system and air detectionsystemneed to track andidentify thousands of tar-getsinreal ti me ,the target informationinclude notonly maneuvering target and not maneuvering tar-gets ,but also environment reverberation and falsealarm. These situations take place in accurateweapon launch system, secondary…  相似文献   

10.
自适应CS模型的强跟踪平方根容积卡尔曼滤波算法   总被引:2,自引:0,他引:2       下载免费PDF全文
对于目标跟踪过程中的强机动问题,基于当前统计(current statistical, CS)模型和改进的强跟踪平方根容积卡尔曼滤波器(square root cubature Kalman filter, SCKF),提出新的跟踪算法。在CS模型和改进输入估计算法的基础上,引入加加速度估计,使得状态过程噪声与状态协方差矩阵相联系,实现模型的自适应调整。从正交性原理出发,重新确定了渐消因子的引入位置,并提出了新的渐消因子计算形式,以克服传统渐消因子在雷达量测坐标系中的失效问题,从而构造强跟踪平方根容积卡尔曼滤波器。另外,构造强机动检测函数,利用SCKF的输出来调整自适应CS模型中的机动频率。仿真结果表明,相比基于CS模型的多重渐消因子强跟踪SCKF算法、改进CS模型的强跟踪SCKF(SCKF STF)算法和交互式多模型(interacting multiple model, IMM)SCKF算法,所提算法具有更佳的目标机动适应性和跟踪精度;相比于IMM SCKF算法,实时性有明显改善。  相似文献   

11.
In target tracking study, the fast target maneuver detecting and highly accurate tracking are very important.And it is difficult to be solved. For the radar/infrared image fused tracking system, a extend Kalman filter combines with a neural fuzzy inference network to be used in maneuvering target tracking. The features related to the target maneuver are extracted from radar, infrared measurements and outputs of tracking filter, and are sent into the neural fuzzy inference network as inputs firstly, and then the target's maneuver inputs are estimated, so that, the accurate tracking is achieved. The simulation results indicate that the new method is valuable for maneuvering target tracking.  相似文献   

12.
在光电目标跟踪与定位中,结合扩展卡尔曼滤波和粒子滤波的优点和目标跟踪的非线性特征,提出了一种非线性系统的基于当前统计模型的自适应扩展卡尔曼粒子滤波算法,根据光电目标的测量信息修正加速度方差,消除随机误差和噪声的干扰,提高预测的精度。通过MonteCarlo对比仿真实验表明该算法正确有效,定位精度较高,滤波效果得到改善,同时增强了稳定性,优于一般的EKF、PF和EPF算法,为光电目标的精确跟踪与定位的实现提供一种新的方法。  相似文献   

13.
基于神经-模糊推理网络的机动目标跟踪方法   总被引:5,自引:0,他引:5  
韩红  韩崇昭  朱洪艳  文戎 《系统仿真学报》2003,15(8):1163-1165,1172
对目标机动的检测和准确跟踪,是目标跟踪研究中非常重要但难度较大的问题。在雷达和红外融合的跟踪系统,将神经-模糊推理网络与扩展Kalman滤波结合起来,形成闭环。即提取和目标机动有关的特征量送入神经-模糊推理网络,再估计目标机动输入,实现对机动目标的精确跟踪。仿真试验说明了本文所采用方法的有效性。  相似文献   

14.
基于Input Estimation的VSIMM机动目标跟踪   总被引:1,自引:0,他引:1  
IMM算法的跟踪性能很大程度上取决于模型集的选择.提出了基于InputEstimation的自适应改变模型集的变结构多模型算法IE_VSIMM.对IMM算法输出的状态估计及其误差协方差进行准Kalman滤波,由Input Estimation算法得到的加速度增量估计,可检测目标机动和生成新的模型集.修正过程则由IMM算法在新模型集上对状态估计及其误差协方差进行更正.仿真结果表明IE_VSIMM算法的跟踪性能更好.  相似文献   

15.
针对多普勒雷达杂波环境下的多机动目标跟踪, 提出了一种基于去相关无偏量测转换序贯滤波的多模型高斯概率假设密度算法。针对量测的非线性, 将位置量测进行无偏量测转换, 将多普勒量测进行去偏量测转换, 并通过序贯滤波方式提高跟踪精度。针对多目标的机动性, 在高斯混合概率假设密度(Gaussian mixture probability hypothesis density, GMPHD)中引入多模型思想对模型相关的高斯分量进行预测、更新处理。仿真结果显示, 所提算法可以在杂波环境中实现有效的机动多目标跟踪, 与无迹卡尔曼多模型GMPHD相比不仅跟踪精度提升了38.15%, 而且大大改善了算法效率; 与无迹卡尔曼最适高斯近似GMPHD相比, 在效率上有小幅度的增加, 且跟踪精度提升了36.47%。  相似文献   

16.
基于UKF-IMM的双红外机动目标跟踪算法   总被引:1,自引:1,他引:1  
为了有效解决红外机动目标跟踪精度问题,提出基于UKF的交互式多模型IMM红外机动目标跟踪算法.该方法采用Markov过程描述多个目标模型间的切换,同时导出滤波器输入输出均加权的交互式算法.滤波器采用UKF,避免计算扩展卡尔曼滤波EKF所需的Jacobi矩阵,适用于非线性、非高斯的目标系统模型和观测模型,同时UKF可供多个模型共用,便于软、硬件实现.最后,用双红外探测器对S型机动目标进行仿真实验,给出应用该方法的具体步骤,验证了IMM-UKF的稳定性、有效性和精确性.  相似文献   

17.
近来,对于机动目标跟踪的问题已经提出很多平滑方法。其中相互作用多模型一概率数据关联固定延迟算法(IMMPDAS)对在杂波环境下跟踪机动目标提供了一个较为有效的解决方法。然而,在此标准的平滑算法中,对于每一种模型采用相同的延迟间隔。提出了一种新的基于IMMPDA状态扩展系统的算法。它的改进性在于针对每种模型的复杂性采取不同的平滑延迟步幅,从而计算量将会大大降低,并且使用将更加灵活。通过对一个高度机动目标的多传感器跟踪的仿真实例来进行验证。仿真结果表明提出的平滑算法精度上与原有的平滑算法相差无几,都比已有的IMMPDA算法在航迹估计精度上有了显著提高,但却有更小的计算量。  相似文献   

18.
机动目标跟踪过程中的转换概率矩阵往往是未知的,系统状态也将呈现非线性、非高斯、不完全观测的特点。传统的方法如交互多模型、广义伪贝叶斯算法等解决该类型问题的效果并不理想。将准贝叶斯法则和辅助粒子滤波算法相结合,提出了一种新的未知转换概率矩阵条件下的机动目标跟踪算法(QB-APF)。仿真结果表明,该算法与其他方法相比具有更高的滤波精度和较好的数值稳定性。  相似文献   

19.
针对空基无源相干定位系统中外辐射源状态不确定性对机动目标跟踪精度的影响,提出了一种基于多模型预测的双变量容积卡尔曼滤波算法.首先建立了机动目标跟踪的系统模型,并确定了多模型集.然后基于多模型思想,将模型交互步骤增加到状态预测步骤之后,对状态预测值进行交互融合,得到最优的状态预测值.为解决固定的马尔可夫转移概率导致系统跟...  相似文献   

20.
针对定结构多模型在高机动目标跟踪算法中存在计算量大、计算时间长、难以满足系统实时性等问题,提出了基于目标机动模式识别的变结构多模型算法。该算法能够选取与目标运动状态相匹配的模型集合,具有时变性、自适应性的优点。通过运用少量的运动模型组成一个模型组,然后不同的运动模型组合形成不同的模型组,以模型组代替原先定结构模型中的多模型,根据跟踪检测到的目标运动模式来选择是否更换模型组,从而用少量运算得到较为精确的次优解。仿真结果表明,该算法在跟踪强机动目标中不但能够有效降低计算量,而且可以使模型集合和目标的运动状态更好地匹配,从而提高目标跟踪精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号