首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Sampling in spatial vision   总被引:2,自引:0,他引:2  
D M Levi  S A Klein 《Nature》1986,320(6060):360-362
The human visual system is capable of making spatial discriminations with extraordinary accuracy. In normal foveal vision, relative position, width or size can be judged with an accuracy much finer than the size or spacing of even the smallest foveal cones. This remarkable accuracy of spatial vision has been termed 'hyperacuity'. Almost a century ago Ewald Hering proposed that the accuracy of Vernier acuity could be accounted for by averaging of discrete samples along the length of the lines comprising the targets; however, the discovery that Vernier acuity of a few arc seconds could be achieved with dots has rendered the nature and role of sampling in spatial discrimination unclear. We have been investigating the sampling of spatial information in central and peripheral vision (the perifovea) of normal human observers and in observers with strabismic amblyopia. Our results, presented here, show that peripheral vision and central vision of strabismic amblyopes differ qualitatively in their sampling characteristics from those of the normal fovea. Both the periphery and the central visual field of strabismic amblyopes demonstrate marked positional uncertainty which can be reduced by averaging of spatial information from discrete samples.  相似文献   

2.
A Johnston  M J Wright 《Nature》1983,304(5925):436-438
Recent studies have revealed some remarkably simple relationships between visual performance and the neuroanatomy of the visual pathways. The visual field is mapped topographically on the surface of the striate cortex in man; the projection is large for the central visual field and is progressively compressed towards the periphery. Visual acuity decreases with distance from the fovea in proportion to the estimated cortical magnification factor, M (the extent of striate cortex in millimetres corresponding to a degree of arc in visual space). If a stimulus is magnified at peripheral locations in proportion to 1/M, it becomes equally resolvable across the visual field. This scaling procedure (M-scaling) maintains equivalence of the cortical projection of stimuli with different visual field loci. We have used M-scaling to investigate motion perception as a visual field variable. We report here that both the lower threshold of motion and adaptation to motion are uniform for M-scaled stimuli, and are related to the velocity of the 'cortical image'.  相似文献   

3.
This paper presents an image-based algorithm for simulating the visual adaptation of the human visual system to various illuminations,especially in dark nighttime conditions.The human visual system exhibits different characteristics depending on the illumination intensity,with photopic vision in bright conditions,scotopic vision in dark conditions,and mesopic vision between these two.A computational model is designed to simulate multiple features of mesopic vision and scotopic vision,including the chromaticity change,luminance change,and visual acuity loss.The system uses a source image under bright illumination as input.Then assuming that the viewer has already adapted to the new conditions,the color spectrum of the input image is reconstructed to replace the source with modifications of the chromaticity and the luminance of the relighted scene.A bilateral filter is used to simulate the visual acuity loss.The model parameters have clear physical meanings and can be obtained from experimental data to achieve realistic results.The algorithm can be used not only for visual perception simulation,but also as a day-for-night tool to produce realistic nighttime images from daytime images.  相似文献   

4.
M A Goodale  D Pelisson  C Prablanc 《Nature》1986,320(6064):748-750
When we reach towards an object that suddenly appears in our peripheral visual field, not only does our arm extend towards the object, but our eyes, head and body also move in such a way that the image of the object falls on the fovea. Popular models of how reaching movements are programmed have argued that while the first part of the limb movement is ballistic, subsequent corrections to the trajectory are made on the basis of dynamic feedback about the relative positions of the hand and the target provided by central vision. These models have assumed that the adjustments are dependent on seeing the hand moving with respect to the target. Here we present evidence that a change in the position of a visual target during a reaching movement can modify the trajectory even when vision of the hand is prevented. Moreover, these dynamic corrections to the trajectory of the moving limb occur without the subject perceiving the change in target location. These findings demonstrate that visual feedback about the relative position of the hand and target is not necessary for visually driven corrections in reaching to occur, and the mechanisms that maintain the apparent stability of a target in space are dissociable from those that mediate the visuomotor output directed at that target.  相似文献   

5.
H W?ssle  U Grünert  J R?hrenbeck  B B Boycott 《Nature》1989,341(6243):643-646
It has long been contentious whether the large representation of the fovea in the primate visual cortex (V1) indicates a selective magnification of this part of the retina, or whether it merely reflects the density of retinal ganglion cells. The measurement of the retinal ganglion-cell density is complicated by lateral displacements of cells around the fovea and the presence of displaced amacrine cells in the ganglion cell layer. We have now identified displaced amacrine cells by GABA immunohistochemistry and by retrograde degeneration of ganglion cells. By reconstructing the fovea from serial sections, we were able to compare the densities of cones, cone pedicles and ganglion cells; in this way we found that there are more than three ganglion cells per foveal cone. Between the central and the peripheral retina, the ganglion cell density changes by a factor of 1,000-2,000, which is within the range of estimates of the cortical magnification factor. There is therefore no need to postulate a selective magnification of the fovea in the geniculate and/or the visual cortex.  相似文献   

6.
Loss of spatial phase relationships in extrafoveal vision   总被引:3,自引:0,他引:3  
I Rentschler  B Treutwein 《Nature》1985,313(6000):308-310
Objects in peripheral vision are not simply blurred but lack quality of form. Assuming that the visual system performs a (patchwise) Fourier analysis of the retinal image (for review see ref. 2), it has been suggested that this disadvantage of peripheral vision may be due to the inability to encode properly spatial phase relationships. This is of great interest for neurological research as certain visual pathologies imply alterations of perceived form. Previous attempts at measuring phase sensitivities failed to distinguish between the detection of phase-related changes in contrast and phase coding in the visual system. We separated these processing strategies by applying the iso-second-order texture paradigm of Julesz to the discrimination of compound gratings. Our results, reported here, show that the energy detection properties of both foveal and peripheral vision are comparable, however, independently of scale, peripheral vision ignores the relative position of image components.  相似文献   

7.
应急图标的认知绩效在紧急救援中起重要作用。为探究应急图标呈现方式及亮度对比的变化对认知绩效的影响机理,采用视觉搜索范式并采用眼动实验进行结果验证。实验a结果表明,高、中载荷下,应急图标呈现方式和亮度对比的主效应明显,反色应急图标的搜索速度明显快于图形应急图标和带边框应急图标,亮度对比中0.90的搜索平均反应时间最短,0.10、0.30、0.60的平均反应时间有随亮度对比升高而降低的趋势;低载荷下,应急图标呈现方式和亮度对比对认知绩效的影响不明显。实验b眼动实验结果表明,高、中载荷下,反色应急图标注视时间明显低于其他呈现方式,亮度对比较高(0.90)的带边框应急图标平均注视时间明显低于低亮度对比,注视时间有随对比度增大而降低的趋势;低载荷下图标呈现方式、亮度对比注视时间无明显差异。高、中、低载荷下注视点的个数无明显差异,解释了实验a的结果。主观评价的评分也对实验结果做出了认知方面的解释。研究表明,应急图标呈现方式及亮度对比对认知绩效具有显著影响。  相似文献   

8.
通过解码鸽子视顶盖(the optic tectum,OT)神经元集群亮度信息的方法,研究了OT区神经元集群编码亮度信息的神经机制。首先设计了具有瞬态闪变特性的亮度视觉刺激模式,采用微电极阵列记录了多通道的锋电位(spike)发放序列;然后提取了神经元集群的spike发放率特征,构造多元线性逆滤波器解码视觉刺激亮度;最后采用互相关和信息论的方法对解码结果进行了分析。结果表明:采用的多元线性逆滤波器有效解码了OT区神经元集群编码的亮度信息。通过对解码参数变化与解码精度的分析可知神经元集群数目13个、bin的宽度5 ms、刺激后15 ms、刺激后持续时间35 ms具有最高的解码精度。通过神经元集群中逆滤波器形态的分析发现,单神经元在亮度信息的编码过程中受周围神经元的动态调制。通过对解码精度与刺激闪变频率关系的分析,发现在刺激闪变频率19 Hz到53 Hz的范围内,重建质量较好,在刺激闪变频率为33.5 Hz时,重建质量达到最优。  相似文献   

9.
上海市区环境亮度及建筑物泛光照明亮度调查   总被引:3,自引:0,他引:3  
对上海市区夜间环境亮度分布进行了一次调查,共计测量了11处环境亮度和16幢泛光照明大楼的立面亮度.这11处环境可分成商业区、行政区、休闲区和居住区等四类,并列举了室外照明过高的影响,16幢泛光照明建筑的立面亮度和主观评价也列表给出.为了便于对建筑的泛光照明效果的评价进行量化比较,提出了一则经验公式,可试作量化评价的工具,并结合上海市夜景环境亮度的具体测量结果,给出了建筑物泛光照明亮度的推荐值,以供讨论。  相似文献   

10.
Temporal precision in the neural code and the timescales of natural vision   总被引:1,自引:0,他引:1  
Butts DA  Weng C  Jin J  Yeh CI  Lesica NA  Alonso JM  Stanley GB 《Nature》2007,449(7158):92-95
The timing of action potentials relative to sensory stimuli can be precise down to milliseconds in the visual system, even though the relevant timescales of natural vision are much slower. The existence of such precision contributes to a fundamental debate over the basis of the neural code and, specifically, what timescales are important for neural computation. Using recordings in the lateral geniculate nucleus, here we demonstrate that the relevant timescale of neuronal spike trains depends on the frequency content of the visual stimulus, and that 'relative', not absolute, precision is maintained both during spatially uniform white-noise visual stimuli and naturalistic movies. Using information-theoretic techniques, we demonstrate a clear role of relative precision, and show that the experimentally observed temporal structure in the neuronal response is necessary to represent accurately the more slowly changing visual world. By establishing a functional role of precision, we link visual neuron function on slow timescales to temporal structure in the response at faster timescales, and uncover a straightforward purpose of fine-timescale features of neuronal spike trains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号