首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
该文主要研究了Frobenius扩张上的投射余可解Gorenstein平坦模与可分Frobenius扩张上的投射余可解Gorenstein平坦维数.设环扩张R?A是Frobenius扩张,M是任意左A-模.首先证明了若AM是投射余可解Gorenstein平坦模,则RM也是投射余可解Gorenstein平坦模.其次,证明了若环扩张R?A是可分Frobenius扩张,则PGfdA(M)=PGfdR(M).  相似文献   

2.
考虑三角矩阵环上的Gorenstein AC-投射模. 设T是三角矩阵环, 其中A和B是环, U是(B,A)-双模. 证明: 若BU是平坦模, UA是有限生成投射模, 则左T-模M是Gorenstein AC-投射模当且仅当M1是Gorenstein AC-投射左A-模, φM是单同态, 且Coker φM是Gorenstein AC-投射左B-模.  相似文献   

3.
设T=(AU0B)是形式下三角矩阵环.引入相对于平坦分解的相容双模,证明了:若U是相对于平坦分解的相容(B,A)-双模,M1是左A-模,M2是左B-模,则M=(M1M2)φM是Gorenstein平坦左T-模当且仅当M1是Gorenstein平坦左A-模,其中φM是单同态,Coker(φM)是Gorenstein平坦左...  相似文献   

4.
设W是包含所有内射模的模类. 通过在任意结合环上引入模的覆盖W-Gorenstein平坦维数, 刻画W-Gorenstein平坦模类的投射可解性, 并证明了: 对任意R 模M和任意正整数n, 若模M的覆盖W-Gorenstein平坦维数为n, 则存在R 模的正合列0→K→H→M→0, 其中[WT]fd(K)=n-1, H是W-Gorenstein平坦模; W- Gorenstein平坦维数不超过覆盖W-Gorenstein平坦维数, 且当覆盖W-Gorenstein平坦维数有限时, 二者相等.  相似文献   

5.
设R是分次环.证明了Gorenstein分次平坦模类为投射可解类当且仅当它是扩张封闭的.还引入了左分次GF-封闭环,刻画了此环上Gorenstein分次平坦模的一些性质.  相似文献   

6.
引入了投射余分解Gorenstein平坦复形的概念. 证明了对任意结合环R,G是投射余分解Gorenstein平坦复形当且仅当每个层次的R-模Gm是投射余分解Gorenstein平坦模, 其中∀m∈Z. 同时研究了投射余分解Gorenstein平坦复形的基本性质, 并探讨了复形G的投射余分解Gorenstein平坦维数与每个层次的R-模Gm的投射余分解Gorenstein平坦维数的关系.  相似文献   

7.
XG-投射模     
设X是任一模类,本文引入XG-投射模的概念,给出了一般环上XG-投射模的等价刻画,并研究了XG-投射模类的投射可解性.作为应用,给出了强Gorenstein平坦模的等价刻画,并且证明了任意环上的强Gorenstein平坦模类是投射可解的.  相似文献   

8.
引入了Gorenstein弱平坦模,给出了Gorenstein弱平坦模的一些性质。证明了Gorenstein弱平坦模类关于直积封闭,Gorenstein弱平坦模类是投射可解类当且仅当它关于扩张封闭,并且证明了每一个模都具有Gorenstein弱平坦预覆盖。  相似文献   

9.
设W是包含所有内射模的模类.通过在任意结合环上引入模的覆盖W-Gorenstein平坦维数,刻画W-Gorenstein平坦模类的投射可解性,并证明了:对任意R-模M和任意正整数n,若模M的覆盖W-Gorenstein平坦维数为n,则存在R-模的正合列0→K→H→M→0,其中fd(K)=n-1,H是W-Gorenstein平坦模;W-Gorenstein平坦维数不超过覆盖W-Gorenstein平坦维数,且当覆盖W-Gorenstein平坦维数有限时,二者相等.  相似文献   

10.
设T是形式三角矩阵环,其中A,B是环且U是(B,A)-双模,给出了形式三角矩阵环T上Gorenstein FP-内射左T-模的刻画,进而讨论了左T-模的Gorenstein FP-内射维数.  相似文献   

11.
设A,B是环,U是(B,A)-双模,n,d为非负整数,■是形式三角矩阵环,首先,证明了■是n-表现左T-模当且仅当M1是n-表现左A-模,Coker φM是n-表现左B-模且φM:U?AM1→M2是单同态。其次,证明了当■是(n,d)-内射左T-模时,M1是(n,d)-内射左A-模,M2是(n,d)-内射左B-模。  相似文献   

12.
设n是整数,T=(A 0U B)是形式三角矩阵环,其中A,B是环,U是左B右A双模,BU是投射模,UA的平坦维数有限。证明了若左T-模(M1M2)φM是n-Gorenstein投射模,则M1是(n-1)-Gorenstein投射左A-模,M2/ImM)是n-Gorenstein投射左B-模,并且 φM:U⊗AM1→M2是单射。反过来,若M1是n-Gorenstein投射左A-模,M2/ImM)是n-Gorenstein投射左B-模,并且 φM:U⊗AM1→M2是单射,则左T-模(M1M2)φM是n-Gorenstein投射模。  相似文献   

13.
讨论了形式下三角矩阵环T=(A 0U B)上的强Ding投射模和强Ding内射模,证明了当UABU的平坦维数有限,并且(M1M2)φM是强Ding投射左T-模时,M1是强Ding投射左A-模,φM是单同态,M2/Im φM是强Ding投射左B-模。  相似文献   

14.
X-丁投射模     
设R是具有单位元的结合环,X是包含所有平坦模的R-模类.引入X-丁投射模和X-丁投射维数的定义并研究了相关性质.如果存在正合列P=:…→P1→P0→P0→P1→…,其中Pi,Pi是投射模,i∈Z,对于任意R-模F∈X,HomR(-,F)作用在正合列P上保持正合,并且M=Ker(P0→P1),那么称M是X-丁投射模.证明...  相似文献   

15.
引入(n,m)-强投射余可解Gorenstein平坦模(即(n,m)-强PGF模)的概念,给出它的一些基本性质。证明了如果M是一个(n,m)-强PGF模,则:(1)M的PGF维数PGFd(M)≤m;(2)当1≤i≤m时,M的第i个合冲是(n,m-i)-强PGF模;当i≥m时,M的第i个合冲是(n,0)-强PGF模。其次证明了:如果模M的第d个合冲是(1,m)-强PGF模,则PGFd(M)=k≤d+m,且M是(1,k)-强PGF模。  相似文献   

16.
设A,B是含单位元的Banach代数, M是一个Banach A,B-双模。 T=(A MB) 按照通常矩阵加法和乘法,范数定义为‖(a mb)‖=‖a‖A+‖m‖M+‖b‖B,构成三角Banach代数。通过作用(f hg)(a mb)=f(a)+h(m)+g(b), T的对偶空间 T*为(A* M*B*)。 在T*上定义模作用 (a mb)·(f hg)=(a·f+m·h b·hb·g), (f hg)·(a mb)=(f·a h·ah·m+g·b), 使其成为一个对偶Banach T-双模。从T到T*的映射称为对偶模映射。 本文对T上对偶模Jordan导子和对偶模广义导子进行讨论, 给出了T上对偶模Jordan导子是对偶模导子的一个充分条件并且对T上对偶模广义导子进行了刻画。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号