共查询到20条相似文献,搜索用时 0 毫秒
1.
研究精确求解某些非线性演化偏微分方程的4种φ(ξ)展式法.用这些方法分别获得了七阶SK-Ito方程、五阶KdV方程、三阶KdV方程、三阶Joseph-Egri方程的许多类型的新行波解.这些方法还可用于求解其它一些非线性演化偏微分方程. 相似文献
2.
研究了Boussinesq方程的经典李群分析、群不变解及行波解.采用经典李群分析法获得了Boussinesq方程的李群分析、群不变解及约化方程.应用Burgers方程的约化变换方程及其精确解构造了φ(ξ)展式法,利用φ(ξ)展式法找到了Boussinesq方程的多种类型行波解.φ(ξ)展式法还可用于求解其他非线性偏微分方程. 相似文献
3.
吴春 《重庆师范大学学报(自然科学版)》2023,40(3):78-85
【目的】研究了非线性色散波K(2,2)方程的行波解问题。【方法】利用行波变换研究了非线性色散波K(2,2)方程的行波解问题。【结果】获得了非线性色散波K(2,2)方程的各种精确行波解,并讨论了这些解的动力学性质。通过图像模拟,直观地展示了部分精确解的动力学行为和动力学演化现象。【结论】研究发现部分解具有奇异性质,与现有文献中的结果相比,获得的精确解都是新结果,而且求解方法和技巧较之前文献中的要简便许多。 相似文献
4.
(3+1)维KP方程的Backlund变换及其精确解 总被引:1,自引:0,他引:1
给出了(3+1)维KP-Ⅰ和KP-Ⅱ方程的2个Backlund变换,并求出了其多组精确解,其中包括单孤子、多孤波解和有理函数形式的lump解. 相似文献
5.
《聊城大学学报(自然科学版)》2017,(1):22-26
通过行波解法将广义(2+1)维浅水波方程转化为常微分方程,然后借助辅助方程得到大量新的精确解,其中包括椭圆函数解、双曲函数解、三角函数解等. 相似文献
6.
一类反应扩散方程的新精确解 总被引:3,自引:18,他引:3
运用一种新的代数途径并借助工程软件Matlab的符号运算功能及计算机技术,构造一类反应扩散方程ut-δuxx λ(μ^3 αμ^2 βμ)=0(其中α,δ,λ,β为常数)的行波解,得到了其它类型的新精确解,扩充了此类方程的解的类型。 相似文献
7.
通过(G′/G)方法得到了Sawada-Kotera方程及其推广方程的三种行波解.这些结果,有助于对非线性波在高维空间的动力学性质的了解. 相似文献
8.
9.
利用拓广的齐次平衡法^「2」和吴文俊消元法,得到了Burgers-KdV方程的一类精确行波解及相似约化,这种求相似约化的方程比用Lie变换群法简便。 相似文献
10.
两类非线性波动方程的精确解 总被引:3,自引:0,他引:3
尚亚东 《兰州大学学报(自然科学版)》1999,35(1):11-17
通过两种不同的方法求出了两类非一性波动方程的一些显式精确解。第一种方法是直接方法,第二种方法是直接方法和假设方法的一种结合。这两种方法都能精确求解两类非线性波动方程,得到的显式精确解包括钟状孤立波解、扭状孤立波解、两种类型的奇异行波解和4种类型的三角函数形周期波解。作为特例,可得到非一性的Pochhammer-Chree方程、对称的mRLW方程的显式精确解。 相似文献
11.
利用Backlund变换完全可积的性质,对偏微分方程uxxx=^~F(u,ux,ut)进行了分类,同时利用该方程到非线笥偏微分方程^~G(v,vx,vt,…,δxv,…δv,)=0的Backlund变换,确定了该非线性偏微分方程的具体形式,并讨论了几个确定方程的精确解. 相似文献
12.
利用新的辅助微分方程,描述了一个构造数学物理中非线性发展偏微分方程精确解的直接代数方法.借助这种方法,考察了某些具有重要应用背景的非线性发展偏微分方程,并且获得了丰富的新的精确行波解.所得结果推广了先前文献的结果. 相似文献
13.
借助于符号计算系统Mathematica获得(2+1)维ZK方程的对称形式并对其进行约化.在约化后的几种情况中选取了一个方程,利用推广的简单方程方法进行求解,得到了新的精确行波解;且分别以含两个任意参数的双曲函数、三角函数及有理函数等三种形式表示之,其中双曲函数表示的行波解中参数取特殊值时可得到孤波解. 相似文献
14.
运用扩展的双曲函数方法,借助计算机代数系统Mathematica or Maple 10,求出了修正的Camassa-Holm及Degasperis-Procesi方程的精确孤子解和精确行波解,其中有一些新的精确孤子解和行波解.这种方法也适用于求解其它非线性波方程. 相似文献
15.
杨耕文 《河南师范大学学报(自然科学版)》2010,38(4)
在辅助方程的基础上构建了一种新的形式解,并利用符号计算系统Mathematica,求得(2+1)维Dav-ey-Stewartson方程的精确解,其中包括双曲函数解,椭圆函数解以及复孤波解. 相似文献
16.
(2+1)维BBM方程的精确解 总被引:4,自引:0,他引:4
夏莉 《西南师范大学学报(自然科学版)》2007,32(3):40-42
通过行波约化一类(2 1)维非线性波动方程和建立与立方非线性Klein-Gordon方程间变换的联系,由此得到其精确解和孤立波解. 相似文献
17.
利用(G'/G)展开法,得到Sharma-Tasso-Olver方程和Benjamin方程包含参数的一系列新的精确解.当参数取特定值时,还可得到孤波解和周期波解.解的形式表达为双曲函数、三角函数及有理函数.该方法直接、简单、有效且易于计算,其还可用来求解更多非线性发展方程. 相似文献
18.
将Clarkson和Kruskal的直接约化法应用到BBM-Burgers方程,得到了多种对称性约化方程和精确解.结果表明C-K法是非常有效的方法. 相似文献
19.
利用对称方法求出了广义MKP方程的对称,基于求得的对称与原方程相容,求出了广义MKP方程的一些精确解,包括雅可比椭圆函数解、三角函数解、双曲函数解、有理数解、多项式解等. 相似文献
20.
利用相容性方法,得到了(2+1)维mKdV-KP的非经典对称及相似约化,并进一步得到了该方程的一些新的精确解,包括双曲函数解,三角函数解,有理函数解,椭圆函数解等。 相似文献