首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 66 毫秒
1.
基于Tiny-YOLO的苹果叶部病害检测   总被引:1,自引:0,他引:1  
由于苹果叶片纹理复杂多变,相似病害难以判断,识别速度难以快速提升,苹果叶部病害的识别仍存在较大研究空间.为实现苹果叶部病害快速、有效的自动检测,本文将Tiny-YOLO应用于苹果叶部病害检测.实验结果表明,Tiny-YOLO模型的mAP和IoU分别为99.86%和83.54%,检测速度达280 FPS,能够有效实现苹果叶部病害检测.  相似文献   

2.
【目的】实际农业生产环境中的苹果叶部病害识别较为困难,本文提出一种基于自监督域自适应网络的识别模型。【方法】该模型首先引入域自适应的方法,通过苹果叶部图片源域与目标域数据集的联合训练,减少源域到目标域的域偏差,增强预训练的模型在目标域上的泛化能力。其次添加自监督模块并引入一种对比损失,使模型在特征空间上学习到病变区域更为细致的表征信息,从而有效增强对相似症状的辨别能力,提高模型的分类性能。【结果】模型在具有复杂背景的公共苹果数据集上进行实验,实验表明,本文模型对各类病害的平均识别准确率达到了91.31%,实现了较高的分类准确度。【结论】本文模型与其它流行的卷积神经网络方法相比,实验结果对比其它模型均有一定的提升,验证了提出模型在实际生产环境中对苹果叶部病害识别上的有效性。  相似文献   

3.
针对苹果叶部病害图像存在光照分布不均匀、对比度低、过亮或过暗区域细节丢失等问题,提出一种改进的Faster R-CNN苹果叶部病害检测方法,提高病害检测的准确率。由于HSV颜色空间中的H、S、V三个分量具有相对独立性,且光照及阴影部分的遮挡对H、S分量的影响很小,因此,将病害图像从RGB颜色空间转换到HSV颜色空间,再采用颜色恒常性(Retinex)算法对图像进行处理。然后,采用Faster R-CNN网络模型对苹果叶部的三种病害(雪松锈病、灰斑病、黑星病)进行目标检测。实验结果表明:该方法提升了检测苹果雪松锈病、灰斑病、黑星病的平均精度,分别提高了4.03%、7.14%和13.77%,整体平均精度提升了8.32%。每幅图像的检测时间为0.201 s,单张图片检测时间减少了42 ms,确保了检测的实时性,这对于病害的预防具有重要意义。  相似文献   

4.
目的 为了提高工具痕迹检验鉴定结果的稳定性和可靠性,提出了一种基于深度学习的方法。方法 使用基于迁移学习的思想与深度卷积神经网络VGG16模型的机器学习算法,对8个断线钳、10个钢丝钳和10个螺丝刀制作的2 800个工具痕迹的2D图像数据集,进行单独和综合训练学习。结果 训练后的模型对测试数据进行识别,对于在精确定位工具刃口条件下制作的钢丝钳剪切痕迹和螺丝刀线条痕迹样本可达到98%以上的准确率,对于工具刃口剪切位置误差为1.5 mm以内的条件下制作的断线钳剪切痕迹样本可达88.3%的准确率,对3种工具的综合数据集的综合识别率达到95.5%的准确率。结论 实验结果表明,不需要预先对工具痕迹做特征工程处理,就能够达到较高的识别率。  相似文献   

5.
针对钢桥病害识别效率低、精度不高的现状,提出了一种基于深度学习的钢结构表观病害识别方法.该方法将卷积神经网络Inception-v4和迁移学习相结合,分别采用迁移学习中特征提取和微调2种训练方式获得2种模型,并与全新训练的Inception-v4模型进行对比.首先,收集656幅钢桥病害图像,包括涂层劣化176幅,腐蚀1...  相似文献   

6.
基于深度卷积神经网络的水稻病害图像识别研究   总被引:1,自引:0,他引:1       下载免费PDF全文
水稻病害类型多,采集过来的图像病斑交界特征复杂多变。即便同类别水稻病害在不同的生长时期,发生在叶片、茎秆、穗部等部位呈现的病斑特征也不一样,而且不同类型病害也存在相似病斑,这些都给水稻病害图像的精准识别带来了相当大的困难。采用深度卷积神经网络模型,使用数据集扩增技术,运用fine-tune方法对网络进行调参及构建,将自然场景下采集的常见8类水稻病害图像输入网络模型中进行训练和测试,在有限的图像数量下取得较高的识别精度,其中纹枯病的准确率为93%。不同于其他方法仅聚焦在水稻叶部或稻穗部,本文识别的图像是多株水稻的场景,可为水稻病害远程自动诊断提供关键技术支持。  相似文献   

7.
为获取样本的多样性特征,提出了一种改进的卷积神经网络结构。该网络中引入多层递归神经网络,利用卷积神经网络提取输入图像的浅层特征,同时利用卷积神经网络和递归神经网络并行提取高层特征,最后将两种网络学习到的特征进行融合输入到分类器中分类。利用迁移学习理论解决小样本集数据训练不足的问题,并将这种卷积神经网络结构应用于石油物资管线钢号识别中。实验探究了递归神经网络个数与卷积核个数对网络性能的影响,实验结果表明,改进的网络结构与其它网络进行对比,错误率降低了 3% 。  相似文献   

8.
为了解决银行、邮局等场合的实时数字识别问题,提出了一种优化的卷积神经网络(Convolutionnal Neural Network,CNN)数字识别方法。以Lenet-5模型为基础改进了卷积神经网络结构并推导了改进后的前向和反向传播算法,将改进的卷积神经网络在手写、印刷数字组合数据库上进行测试,分析了不同样本数量、训练迭代次数等参数对识别准确率的影响,并与传统算法进行比较分析。结果表明改进后的CNN结构简单,处理速度快,识别准确率高,具有良好的鲁棒性和泛化性,识别性能明显高于传统网络结构。  相似文献   

9.
垃圾分类已经成为当前社会生活的新风尚.本论述针对当前垃圾分类工作环境差和容易分类出错的问题,研究基于深度学习的垃圾自动分类方法,并设计基于深度残差卷积神经网络ResNet50的垃圾识别方法.为避免垃圾图像数据集中训练数据量的不足,采用对使用ImageNet训练好的ResNet50模型进行迁移微调的方法来优化网络参数.在...  相似文献   

10.
为有效识别沥青路面病害类别,将VGG卷积神经网络引入沥青路面病害识别中. 根据VGG模型随着卷积核深度的加深可获得图片更深层次特征的特点,将VGG模型最后一层卷积核的卷积深度加深,得到改进型VGG模型,并与原始VGG模型进行比较. 结果表明:改进型VGG模型每步用时278ms,相比于原始模型每步用时258ms略有增加,而病害识别精度进一步提升了1.36%,对龟裂、松散等复杂裂缝分别提高了1.12%、0.84%. 可见,VGG模型可有效识别路面病害,将其适当改进后效果更佳,对诸如松散、龟裂等复杂路面病害可做到精确识别,能及时、有效监测路面破损状况.  相似文献   

11.
以交通标志识别为研究目的,提出一种基于集成卷积神经网络的交通标志识别算法,通过对多个不同结构的卷积神经网络进行集成以提高算法识别率。为了缩短网络训练和测试时间以及提高网络识别率,对单个卷积神经网络的结构进行了优化。使用ReLU(rectified linear unit)激活函数来代替传统的激活函数,使用批量归一化(batch normalization,BN) 方法对卷积层输出数据进行归一化处理,将卷积神经网络的分类器用支持向量机(support vector machine,SVM)代替。使用德国交通标志识别数据库(german traffic sign recognition benchmark,GTSRB)进行训练和测试,实验结果表明,提出的算法识别率为98.29%,单幅交通标志图像测试时间为1.32 ms,对交通标志具有良好的识别性能。  相似文献   

12.
卷积神经网络在人脸识别上有较好的效果,但是其提取的人脸特征忽略了人脸的局部结构特征.为了提取更加全面的人脸特征,提出一种基于局部二值模式(local binary pattern,LBP)与卷积神经网络相结合的新方法.首先,提取人脸图片的LBP特征图像,然后把LBP图像与原RGB图像结合作为网络输入数据,并且使用随机梯度下降法训练网络参数,最后用训练得到的网络模型对人脸图片进行识别.通过在LFW(labeled face in the wild)人脸识别数据库上的实验表明,在卷积神经网络中加入LBP图像信息可以提高人脸识别的准确率.另外,当增加训练数据时,提出的方法得到的识别率会进一步提高,更说明提出方法的有效性.  相似文献   

13.
环境和荷载协同作用导致的路面病害对道路使用性能和安全性能的影响日益突出。现有图像智能识别算法难以实现处理速度和计算量的平衡。针对道路病害快速准确实时识别的需求,对石家庄损伤较为严重的路面进行实地拍照,结合已有图片,采用数据增强技术构建了市政道路病害数据集,并且提出了一种基于MobileNetV3网络的轻量化道路病害识别网络模型GEM-MobileNetV3。该模型首先使用Ghost模块代替MobileNetV3网络基本单元中的1×1卷积;然后结合改进后的高效通道注意力机制ECA模块提取病害目标的重要特征;最后将网络浅层的ReLU激活函数替换为泛化能力更强的Mish激活函数,提高模型的整体性能。通过消融实验与对比实验,验证了新模型的有效性。实验结果表明,新模型准确率达到96.33%,其参数量与计算量较MobileNetV3模型分别降低了37.9%和36%。提出的新模型在保持较高识别准确率的同时有效降低了模型复杂度,为在低成本计算平台上实现高准确率实时识别提供了新途径。  相似文献   

14.
为了解决传统的基于人工特征的负面表情识别方法在面部无遮挡、姿态非倾斜的人脸表情图像上表现良好,但是在复杂场景下的识别效果较差的问题,提出了一种基于改进的卷积神经网络的负面表情识别方法.首先利用卷积神经网络的无监督特征学习的特性,预训练两个不同拓扑结构的卷积神经网络,用以提取表情特征;然后融合这些特征,训练分类性能更强的支持向量机.改进后的卷积神经网络算法具有较好的鲁棒性和泛化能力,在训练数据库ICML-fer2013上取得了86.2%的识别率,在测试数据库CK+,GENKI和JAFFE上分别取得了81.6%,87.0%和80.8%的识别率.  相似文献   

15.
针对Softmax(柔性最大值)损失对特征只有可分性的不足,提出一种基于深度卷积神经网络的判别性人脸识别算法.该算法首先根据Softmax损失特征分布,在特征和权重向量间施加一个类内余弦相似性损失,使类内更加紧凑,类间尽可能分离;然后在Softmax损失基础上通过归一化特征来更好地模拟低质量人脸图像,并通过归一化权重来减轻类别不平衡,使与测试时的余弦相似性度量一致;最后联合归一化的Softmax损失和类内余弦相似性损失在预训练模型上进行微调.该算法在人脸识别基准测试集LFW(户外人脸标记)和YTF(You Tube人脸数据库)上分别取得了98.72%和93.38%的识别率,实验结果表明:在大规模人脸身份识别中,该算法提高了特征的判别性,增强了模型的泛化能力,能有效提高人脸识别率.  相似文献   

16.
The micro-expression lasts for a very short time and the intensity is very subtle. Aiming at the problem of its low recognition rate, this paper proposes a new ...  相似文献   

17.
我国字符一般由汉字、英文字母以及阿拉伯数字组成,字符图片的类型众多给字符的识别带来了很多困难.参照目前现有人工智能算法的优点,结合了字符特征提取方法设计了一个改进的BP神经网络对归一化后的三类字符进行识别,取得了预期效果.  相似文献   

18.
为了提高卷积神经网络(CNN)的泛化性和鲁棒性,改善无人机航行时识别目标图像的精度,提出了一种CNN与概率神经网络(PNN)相结合的混合模型。利用CNN提取多层图像表示,使用PNN提取特征对图像进行分类以替代CNN内部的BP神经网络,采用均方差和降梯度法训练模型,通过将预处理的图像传输到CNN-PNN模型,对图像纹理和轮廓进行分类识别,并将此模型的仿真结果与卷积神经网络模型、卷积神经网络-支持向量机模型的结果进行对比。仿真结果表明,与其他两种模型相比,CNN-PNN模型具有更好的精准度,识别率高达96.30%。因此,CNN-PNN模型能够快速有效地识别图像,准确度和实时性较高,在图像识别等方面具有很好的应用前景。  相似文献   

19.
为了有效改善现有人脸表情识别模型中存在的信息丢失严重、组件间相对空间联系不密切的问题,提出了一种改进的多尺度卷积神经网络模型,通过构建深层多尺度卷积神经网络,使模型能够挖掘出更多潜在的特征信息;通过特征融合促进信息的流通和重利用,减少池化操作所引起的重要信息丢失,使得模型具有更好的学习能力;通过控制每层多尺度卷积神经网...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号