首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
根据波函数的有限性和非球谐振子势的渐近性,通过待定波函数的设定,得到势函数为V(r)=w′r10+d′r8+c′r6+b′r4+a′r2的定态schr dinger方程的精确的能量本征值和本征波函数.结果表明,体系处于束缚态时,势参数w′,d′,c′,b′,a′需满足一定的制约关系.  相似文献   

2.
根据波函数的有限性和非球谐振子势的渐近性质,通过待定非球谐振子势波函数的设定,得到势函数表示为V(r)=D0r14+D1r12+D2r10+D3r8+D4r6+D5r4+D6r2的schr(o..)dinger方程的精确的能量本征值和本征波函数.  相似文献   

3.
该文采用连续分数法得到了势函数V(r)=a1r10+a2r4+a3r2的径向Schrodinger方程的一个解析解,并作适当的讨论。  相似文献   

4.
采用连分法得到了幂函数与逆幂函数V(r)=A1r6+A2r2+B2r-4+B1r-6的叠加势径向Schrodinger方程的 解析解.  相似文献   

5.
根据波函数的有限性和非球谐振子势的渐近性,通过待定波函数的设定,得到势函数为V(r)=w′r10 d′r8 c′r6 b′r4 a′r2的定态schrdinger方程的精确的能量本征值和本征波函数.结果表明,体系处于束缚态时,势参数w′,d′,c′,b′,a′需满足一定的制约关系.  相似文献   

6.
根据波函数的有限性和非球谐振子势的渐近性质,通过待定非球谐振子势波函数的设定,得到势函数的表示为V(r)=B_(10)r~(10)+B_8r~8+B_4r~4+B_2r~2的schrdinger方程的精确的能量本征值和本征波函数.研究结果表明,体系处于束缚态时,势参数需满足一定的偶合关系.  相似文献   

7.
根据波函数的有限性和叠加势函数的的渐近性质,通过待定叠加势波函数的设定,得到势函数表示为V(r)=A0r6+A1r4+A2r2+B1/r2+B1/r4+B0/r6的schr(o)dinger方程的精确的能量本征值和本征波函数.  相似文献   

8.
对波函数进行变换,给出了在一维非谐振子势中粒子波函数和能级的精确解,势参数a,b,c,满足一定的约束关系.  相似文献   

9.
叠加势V(r)=A1r6+A2r2+B2r-4+B1r-6径向Schrodinger方程的解析解   总被引:1,自引:0,他引:1  
采用连分法得到了幂函数与逆幂函数V(r)=A1r6+A2r2+B2r-4+B1r-6的叠加势径向Schrodinger方程的解析解.  相似文献   

10.
利用对能量本征函数的一个假设,得到了V(r)=a1r6+a2r2+a3r-4+a4r-6的径向Schrocinger方程的一个解析解,并对偶次送幕势1/r2n势和高次倍谐振子势r2m叠加势给出了它的径向Schrodinger方程的一个解析解的通式.  相似文献   

11.
根据波函数的有限性和非球谐振子势的渐近性质,通过待定非球谐振子势波函数的设定,得到势函数表示为V(r)=Dor^14 D1r^12 D2r^10 D3r^8 D4r^6 D5r^4 D6r^2的schroedinger方程的精确的能量本征值和本征波函数。  相似文献   

12.
By using the soliton theory, it is known that the exact solutions of the Schrdinger equation for the time_dependent harmonic oscillator only need to solve an oscillation equation with respect to space variable and a time_dependent Schrdinger equation.  相似文献   

13.
根据波函数的有限性和叠加势函数的渐近性质,通过待定波函数的设定,得到势函数表示为V(r)=B6r6+B5r5+B4r4+B3r3+B2r2+B1r的径向schr dinger方程的精确的能量本征值和本征波函数。  相似文献   

14.
对波函数进行变换,给出了在一维非谐振子势中粒子波函数和能级的精确解,势参数a,b,c,满足一定的约束关系.  相似文献   

15.
根据波函数的有限性和叠加势函数的渐近性质,通过待定波函数的设定,得到势函数表示为V(r)=B6r6 B5r5 B4r4 B3r3 B2r2 B1r的径向schr(o)dinger方程的精确的能量本征值和本征波函数.  相似文献   

16.
根据波函数的有限性和负幂次势V(r)=B6r6 B5r5 B4r4 B3r3 B2r2 B1r的渐近性质,通过待定势波函数的设定,得到以其为势函数的schr(o)dinger方程的精确的能量本征值和本征波函数;通过对势参数制约关系、能量本征值和本征波函数的分析,得到势参数制约关系、能量本征值和本征波函数的通式.结果表明:势参数之间存在制约关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号