首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
李慧  张军 《科学技术与工程》2014,14(12):268-271
由于生物质油成分的复杂性,很难验证生物质油催化加氢中的反应基理和反应过程。通过正交实验分析的方法,选用生物质油中含量比较高的邻甲氧基苯酚作为模型化合物,并选用5%含量的Pd/C作为催化剂,对生物质油的模型化合物进行了催化加氢试验研究。结果表明邻甲氧基苯酚催化加氢主要产物为环烯醇和环已醇以及芳香酮,在本实验最佳反应条件下,其转化率达到70%,同时明确了两条反应机理。此结果为进一步研究生物质油的催化加氢反应机理提供基础。  相似文献   

2.
随着化石能源的日益减少,来源于木质纤维素基可再生生物质油越来越受到人们的关注.但是,与石油相比,生物质油含氧量高,导致其能量密度低、黏度高、热和化学稳定性差,因而必须进行脱氧提质才能用作发动机燃料.在生物质油提质方法中,加氢脱氧(HDO)最具应用前景.综述了木质纤维素基生物质油HDO催化剂的研究进展,包括过渡金属硫化物、磷化物、氮化物和碳化物,贵金属,金属-酸双功能催化剂,过渡金属以及非晶态合金等.过渡金属硫化物催化剂用于HDO时,会因S被氧化物或水中O逐步取代而失活;贵金属催化剂虽具有高HDO活性和选择性,但因价格高、资源受限而无法大规模应用;过渡金属氮化物、碳化物和过渡金属催化剂活性较高,但会在HDO中因结焦或氧的嵌入导致催化剂失活;非晶态合金催化剂具有较高HDO活性,但热稳定性较差;过渡金属磷化物的HDO活性高,稳定性好,是一类优良的HDO催化活性相.载体的表面性质和孔结构对其负载的HDO催化剂性能影响较大.碳沉积和结构破坏是HDO催化剂失活的主要原因.  相似文献   

3.
生物质能是环境友好的可再生能源之一,可为解决化石能源超量消耗带来的能源危机与环境问题提供重要支撑.生物油作为生物质能典型代表之一,具有替代石油的巨大潜力.然而,生物油因理化性质较差而无法直接被工业利用,需进行催化加氢以提升品质.本文以苯酚为生物油模型化合物,基于异丙醇-水液相重整反应体系,耦合液相催化加氢反应,选用Aspen plus软件对全反应过程进行热力学计算.结果表明:随着反应温度的增加,异丙酸-水液相重整产氢反应(APRI)和苯酚-水液相重整产氢反应.(APRP)两个反应均为吸热反应,其吉布斯自由能均减少;较高的反应温度可降低APRI和APRP的吉布斯自由能,使其自发进行;在低温下,APRI在热力学上是有利的,在温度超过340℃时,反应体系更利于APRI.  相似文献   

4.
选用松木作为生物质样品,高压反应釜作为加氢萃取反应器.研究了反应温度、反应时间、溶剂、氢气压强、木屑粒度、催化剂等因素对生物质萃取的转化率、粘结剂产率和油气产率的影响。实验结果表明,通过优化反应条件,在反应温度350℃、反应时间1h、木屑粒度〈0.5mm、氢气压强5.0MPa的条件下,用(NH4)2MoS4作催化剂、四氢萘作为溶剂,能够获得高达90.84%的转化率和35.90%的粘结剂产率。傅里叶变换红外光谱分析表明,经过加氢萃取,生物质的化学结构发生了明显的变化,饱和烃基和苯环结构增加,含氧官能团减少。  相似文献   

5.
陆彦彬  马彪 《科技资讯》2015,13(1):86-87
以生物质能源作为化石能源的替代品将会在能源应用领域发挥重要作用,生物质热解所制备的生物粗油具有原料价格低廉、再生能力强、运输方便、热值较高等特点,经过转化后可作为液体燃料和并为化工行业提供原料。催化加氢、催化裂解、添加溶剂及乳化等是目前主要的生物油改性提质的有效手段。催化加氢和催化裂解工艺应用前景较好,但须提高油品的产率和稳定性、寻找适合的催化剂并降低工艺运行成本;乳化方法无需复杂化学操作但须降低成本并防止腐蚀发生;水蒸气重整生物油制氢须在机理研究方面进行深入探讨。将加氢提质工艺与其他方法如催化酯化、缩合、催化裂解等工艺进行系统集成,提高过程经济效益,将是生物油加氢精制技术发展的新方向。  相似文献   

6.
GC-MS分析生物质热解油的研究   总被引:2,自引:0,他引:2  
将流化床热解反应器上由不同生物质原料在不同反应条件下制得的生物油,用GC-MS法分离和鉴定其化学成分.经谱库检索得到50余种成分,主要为小分子的酸、酚和酮类.通过比较发现生物质原料对生物油的组成具有较大影响,而热解温度对生物油的组成影响不大.  相似文献   

7.
生物质油精制前后燃烧性能比较   总被引:5,自引:0,他引:5  
对生物质喷动流化床快速裂解油进行催化裂解精制,在氧气气氛,不同升温速率下对精制前后的生物质油和精制油进行TG—DTA分析,对生物质油精制前后的燃烧性能和动力学进行了分析和比较。结果表明:精制后比精制前挥发所需能量降低了10.02kJ/mol;燃烧活化能由原来的173.64kJ/mol降低到80.95kJ/mol,这说明精制后的精制油大大降低了燃烧所需的活化能,提高了油的可燃性,使得生物质油更容易燃烧。  相似文献   

8.
生物质快速热解制备生物油   总被引:3,自引:1,他引:2  
大规模生物质快速热解制取生物油将成为解决液体燃料短缺的一个重要途径。总结了热解所需的原料预处理要求,介绍了各种热解反应器目前的应用状况,重点介绍了利用热解副产物(焦炭和燃气)实现自热式热解液化的工艺技术及其关键问题,并结合3种比较成熟的热解反应器介绍了最佳的自热式热解工艺,随后阐述了热解产物中的固体颗粒分离以及生物油冷凝的工艺,阐述了生物油生产、存储和运输过程中的环境、安全和健康问题。  相似文献   

9.
《河南科学》2016,(1):70-73
以多元共组装和湿法浸渍制备两亲性催化剂Pd/C-SiO_2-Al_2O_3,十氢萘和水混合液模拟生物油油水体系,苯酚为模型化合物,研究其加氢脱氧活性.结果表明:相比于亲水性催化剂Pd/C-SiO_2-Al_2O_3和疏水性催化剂Pd/C,两亲性催化剂Pd/C-SiO_2-Al_2O_3具备更高的苯酚转化率和目标产物环己烷的选择性.两亲性催化剂Pd/C-SiO_2-Al_2O_3能稳定油水乳浊液,催化界面反应,在生物油提质中,有很好的应用前景.  相似文献   

10.
生物质热解液化产物——生物油的国内外研究进展   总被引:1,自引:0,他引:1  
生物质快速热解液化技术是最有前景的生物质利用技术之一.对国际上几种典型的生物质热解液化装置类型进行了总结,详细介绍了国内主要研究机构的研究现状.概述了生物油的物理化学性质,介绍了不同热解工艺和原料对生物油组成的影响,列举了3种生物油改性技术,对存在的问题和应用前景进行了初步阐述.  相似文献   

11.
较系统地研究了液相加氢法合成对氯苯胺,着重研究了加氢反应的催化剂、溶剂、脱卤抑制剂及反应的温度、压力等主要工艺参数对反应的影响.对硝基氯苯液相催化加氢还原制备对氯苯胺的反应中选用1%Pd/C为催化剂,工业酒精为溶剂,吗啉为脱卤抑制剂,加氢反应温度80~90℃,压力1 MPa .在此条件下反应2.60 h,对硝基氯苯的转化率为100%,对氯苯胺的实际收率可达95%.催化剂连续使用5次,其性能没有明显下降.  相似文献   

12.
以乙腈液相选择性加氢制备乙胺为目标反应,分别制备了超细Ni—B和Co-B非晶态合金催化剂,比较了不同催化剂的活性和对乙胺选择性,得到如下结果:活性顺序为Ni—B非晶态合金>Co-B非晶态合金>Raney Ni;对目标产物乙胺的选择性顺序为Co-B非晶态合金>Ni—B非晶态合金>Raney Ni,其中Co-B非晶态合金乙腈加氢,乙胺的最高得率超过90%,有良好的工业化应用前景.通过催化剂表征和动力学研究,初步讨论了催化性能与催化剂结构的关系.  相似文献   

13.
采用NCG工业新型苯加氢催化剂(Ni/Al2O3),通过消除外扩散和内扩散影响,在反应温度433~473 K和氢压0.6~3.3 MPa下,对液相苯催化加氢制环已烷的反应动力学进行了研究.结果表明,液相反应中苯的反应级数为0,氢的反应级数几乎为1,因此氢在催化剂内的传质过程是形成内扩散阻力的主要原因.由内部效率因子和T...  相似文献   

14.
2,4—二硝基氟苯液相选择性催化氢化的研究   总被引:3,自引:0,他引:3  
研究以 Pd Cl2/ C+ Fe( O Ac)2 为催化剂,乙酸和乙醇为溶剂,在室温和低压下用氢气选择性还原2 ,4 - 二硝基氟苯为2 - 氟- 5 - 硝基苯胺,选择性还原收率为76 .1 % ,产品纯度为99 .0 % 。  相似文献   

15.
由糠醛在铜系催化剂上液相加氢动力学的试验数据中计算活化能,并证实了反应速度的大小,在—定条件下与糠醛浓度无关。反应速度正比于氢压的0.55~0.68次方。  相似文献   

16.
糠醛液相加氢制糠醇新型催化剂的研究   总被引:2,自引:0,他引:2  
本文重点对糠醛加氢反应制糖醇Cu/SiO_2催化剂的制备工艺进行了研究。得到了具有活性高、选择性好的催化剂最佳制备工艺条件。同时又考察了添加少量碱土金属助剂的催化作用,并对该催化剂的再生和中间试验进行了探索。  相似文献   

17.
以4-甲基苯胺为原料,在关键步骤催化氢化中以漆原镍作催化剂,可在低温常压下将4甲基-2-硝基苯胺氢化还原为4-甲基邻苯二胺,产品易提纯,无三废,收率达80%以上,催化剂能重复使用10次以上,方法有广泛的应用前景.  相似文献   

18.
生物质油精制前后热稳定性和热分解动力学研究   总被引:2,自引:0,他引:2  
采用TGA-DTA联用测定生物质油的热失重曲线,用Achar微分法和Coats-Redfern积分法计算了挥发和热分解的活化能,并结合Satava法和Bagchi法确定热分解机理函数,得到了生物质油精制前后的非等温动力学方程。推断出热分解过程分别为三级反应和三维扩散3D反应,动力学方程分别为da/dt=0.5Ae^-E/RT(1-α)^3和da/dt=1.5Ae^-E/RT(1-α)^4/3[(1-α)^-1/3-1]^-1。实验表明,精制后的生物质油较精制前挥发的活化能降低了很多而热解活化能提高了很多,相应地,精制后的生物质油的挥发性和热稳定性都提高了很多。  相似文献   

19.
生物质油催化裂解精制中催化剂上焦炭前身物的分析   总被引:3,自引:0,他引:3  
采用热重、红外、核磁等分析手段,对生物质油催化裂解精制中使用的催化剂HZSM-5上的焦炭前身物进行了表征。沉积在催化剂表面上的焦炭前身物主要是短链饱和烃类化合物,沸点200℃以下;催化剂内部的结焦前身物主要为芳香族碳氢化合物,这些化合物的沸程为350~650℃。  相似文献   

20.
通过对低质生物油进行分离提质,使生物油由原来的pH=2.52提高到pH=5.47,说明生物油中的羧酸已基本分离除去。生物油分离前后的红外光谱分析结果表明,分离提质后生物油中羧基峰(1600cm-1左右)已经大大减弱。从生物油中分离出的水相含有大量的羧酸,可用于制备醋酸钙(镁)盐类融雪剂,其产物经红外光谱分析和X射线衍射光谱分析证明了该产品的结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号